题目内容
17.分析 由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解答 解:根据图象知道
当x=1时,y=a+b+c>0,故①错误;
当x=-1时,y=a-b+c<0,故②正确;
∵抛物线开口朝下,
∴a<0,
∵对称轴x=-$\frac{b}{2a}$(0<x<1),
∴2a<-b,
∴b+2a<0,故③正确;
∵对称轴x=-$\frac{b}{2a}$(0<x<1),
∴b>0,
∵抛物线与y轴的交点在x轴的上方,
∴c>0,
∴abc<0,故④错误.
故答案为:②③.
点评 此题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用是解题关键.
练习册系列答案
相关题目
8.一组数据4,6,6,a的中位数与平均数相同,则a的值为( )
| A. | 4 | B. | 8 | C. | 4或8 | D. | 4或7 |