题目内容
8.解下列方程组:(1)$\left\{\begin{array}{l}{x-2y=5}\\{2x+7y=-1}\end{array}\right.$
(2)$\left\{\begin{array}{l}{5(x-9)=6(y-2)}\\{\frac{x}{4}-\frac{y+1}{3}=2}\end{array}\right.$.
分析 (1)方程组利用加减消元法求出解即可;
(2)方程组整理后,利用加减消元法求出解即可.
解答 解:(1)$\left\{\begin{array}{l}{x-2y=5①}\\{2x+7y=-1②}\end{array}\right.$,
②-①×2得:11y=-11,即y=-1,
把y=-1代入①得:x=3,
则方程组的解为$\left\{\begin{array}{l}{x=3}\\{y=-1}\end{array}\right.$;
(2)方程组整理得:$\left\{\begin{array}{l}{5x-6y=33①}\\{3x-4y=28②}\end{array}\right.$,
①×2-②×3得:x=-18,
把x=-18代入②得:y=-$\frac{123}{6}$,
则方程组的解为$\left\{\begin{array}{l}{x=-18}\\{y=-\frac{123}{6}}\end{array}\right.$.
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
练习册系列答案
相关题目
3.根据下列条件,不能判断△ABC形状的是( )
| A. | AB=BC | B. | ∠A=80° | C. | ∠A=50°,∠B=70° | D. | ∠A-∠B=∠C |
13.若x-3y=-5,则代数式5-2x+6y的值是( )
| A. | 0 | B. | 5 | C. | 10 | D. | 15 |
20.已知a1=x-1(x≠1且x≠2),a2=$\frac{1}{1-{a}_{1}}$,a3=$\frac{1}{1-{a}_{2}}$,…,an=$\frac{1}{1-{a}_{n-1}}$,则a2015等于( )
| A. | $\frac{2-x}{1-x}$ | B. | x+1 | C. | x-1 | D. | $\frac{1}{2-x}$ |
18.
如图,给出下列条件:其中,能推出AB∥DC的是( )
①∠1=∠2; ②∠3=∠4;
③∠B=∠DCE; ④AD∥BC且∠B=∠D.
①∠1=∠2; ②∠3=∠4;
③∠B=∠DCE; ④AD∥BC且∠B=∠D.
| A. | ①④ | B. | ②③ | C. | ①③ | D. | ①③④ |