题目内容

16.某校九年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:
(1)则样本容量是50,并补全直方图;
(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12的次数;
(3)已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.
发言次数n
A0≤n<3
B3≤n<6
C6≤n<9
D9≤n<12
E12≤n<15
F15≤n<18

分析 (1)根据B、E两组发言人数的比和E组所占的百分比,求出B组所占的百分比,再根据B组的人数求出样本容量,从而求出C组的人数,即可补全统计图;
(2)用该年级总的学生数乘以E和F组所占的百分比的和,即可得出答案;
(3)先求出A组和E组的男、女生数,再根据题意画出树状图,然后根据概率公式即可得出答案.

解答 解:(1)∵B、E两组发言人数的比为5:2,E占8%,
∴B组所占的百分比是20%,
∵B组的人数是10,
∴样本容量为:10÷20%=50,
∴C组的人数是50×30%=15(人),
∴F组的人数是50×(1-6%-20%-30%-26%-8%)=5(人),
补图如下:


(2)∵F组的人数是1-6%-8%-30%-26%-20%=10%,
∴发言次数不少于12的次数所占的百分比是:8%+10%=18%,
∴全年级500人中,在这天里发言次数不少于12的次数为:500×18%=90(次).

(3)∵A组发言的学生为:50×6%=3人,有1位女生,
∴A组发言的有2位男生,
∵E组发言的学生:4人,
∴有2位女生,2位男生.
∴由题意可画树状图为:

∴共有12种情况,所抽的两位学生恰好是一男一女的情况有6种,
∴所抽的两位学生恰好是一男一女的概率为$\frac{6}{12}$=$\frac{1}{2}$.

点评 本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网