题目内容
7.如下是按一定规律排列的方程组集合和它的解的集合的对应关系,若方程组从左至右依次记作方程组1,方程组2,方程组3,…,方程组n.方程组集合:$\left\{\begin{array}{l}{x+y=1}\\{x-y=1}\end{array}\right.$,$\left\{\begin{array}{l}{x+y=1}\\{x-2y=4}\end{array}\right.$,$\left\{\begin{array}{l}{x+y=1}\\{x-3y=9}\end{array}\right.$,…$\left\{\begin{array}{l}{--}\\{--}\end{array}\right.$
对应方程组解的集合:$\left\{\begin{array}{l}{x=-}\\{y=-}\end{array}\right.$,$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$,$\left\{\begin{array}{l}{x=3}\\{y=-2}\end{array}\right.$,…$\left\{\begin{array}{l}{x=-}\\{y=-}\end{array}\right.$.
(1)方程组1的解为$\left\{\begin{array}{l}{x=1}\\{y=0}\end{array}\right.$;
(2)请依据方程组和它的解变化的规律,直接写出方程组$\left\{\begin{array}{l}{x+y=1}\\{x-ny={n}^{2}}\end{array}\right.$,方程组n的解$\left\{\begin{array}{l}{x=n}\\{y=-(n-1)}\end{array}\right.$;
(3)若方程组$\left\{\begin{array}{l}{x+y=1}\\{x-ay=25}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=5}\\{y=-4}\end{array}\right.$,求a的值,并判断该方程组是否符合(2)中的规律.
分析 (1)求出方程组1的解即可;
(2)观察一系列方程组的解特征,归纳总结得到一般性规律即可;
(3)利用加减消元法求出方程组的解,验证即可.
解答 解:(1)$\left\{\begin{array}{l}{x=1}\\{y=0}\end{array}\right.$,
故答案为:$\left\{\begin{array}{l}{x=1}\\{y=0}\end{array}\right.$;
(2)方程组n$\left\{\begin{array}{l}{x+y=1}\\{x-ny={n}^{2}}\end{array}\right.$它的解是$\left\{\begin{array}{l}{x=n}\\{y=-(n-1)}\end{array}\right.$;
故答案为:$\left\{\begin{array}{l}{x+y=1}\\{x-ny={n}^{2}}\end{array}\right.$,$\left\{\begin{array}{l}{x=n}\\{y=-(n-1)}\end{array}\right.$;
( 通过观察分析,得方程组中第1个方程不变,只是第2个方程中y的系数依次变为-1,-2,-3,…,-n,第2个方程的常数规律是n2.
它们解的规律是x=1,2,3,…,n.
相应的y=0,-1,-2,-(n-1).)
(3)因为$\left\{\begin{array}{l}{x=5}\\{y=-4}\end{array}\right.$是方程组$\left\{\begin{array}{l}{x+y=1}\\{x-ay=25}\end{array}\right.$的解,
所以有5-a×(-4)=25,
解得a=5,
即原方程组为$\left\{\begin{array}{l}{x+y=1}\\{x-5y=25}\end{array}\right.$
所以该方程组符合(2)中的规律.
点评 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.
| A. | x2=0 | B. | ax2+bx+c=0(a,b,c均为常数) | ||
| C. | x2+y=5 | D. | x3+$\frac{2}{x}$+1=0 |
| A. | 2 | B. | $\frac{1}{2}$ | C. | 3 | D. | $\frac{1}{3}$ |