题目内容

19.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(4,2),M、N分别是AB、BC的中点.
(1)若反比例函数y=$\frac{m}{x}$(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上;
(2)若反比例函数y=$\frac{m}{x}$(x>0)的图象与△MNB(包括边界)有公共点,请直接写出m的取值范围.

分析 (1)根据顶点B的坐标为(4,2),M、N分别是AB、BC的中点.得到M点的坐标为(2,2),把M(2,2)代入反比例函数y=$\frac{m}{x}$(m≠0)可求出m,确定反比例函数的解析式;再根据B点坐标为(4,2),N点坐标为(4,1),易得N(4,1)满足反比例函数解析式,即可判断点N在该函数的图象上;
(2)由反比例函数y=$\frac{m}{x}$(m≠0)的图象与△BMN的边始终有公共点,而M、N都在y=$\frac{4}{x}$上,则此时m最小,反比例函数过B点时,m最大,此时m=4×2=8,由此得到m的取值范围.

解答 解:(1)∵顶点B的坐标为(4,2),M、N分别是AB、BC的中点,
∴M点的坐标为(2,2),
把M(2,2)代入反比例函数y=$\frac{m}{x}$(m≠0)得,m=2×2=4,
∴反比例函数的解析式为y=$\frac{4}{x}$;
∵M、N分别为矩形OABC的边AB、BC的中点,且M(2,2),B点坐标为(4,2),
∴N点坐标为(4,1),
∵4×1=4,
∴点N在函数y=$\frac{4}{x}$的图象上;
(2)4≤m≤8.

点评 本题考查了反比例函数综合题:点在反比例函数图象上,点的横纵坐标满足其解析式;运用矩形的性质和中点的定义求点的坐标.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网