题目内容
考点:菱形的判定,矩形的性质
专题:
分析:根据三角形中位线定理求出NE∥MF,NE=MF,得出平行四边形,求出BM=CM,推出ME=MF,根据菱形的判定推出即可;
解答:答:四边形MENF是菱形.
证明:∵N、E、F分别是BC、BM、CM的中点,
∴NE∥CM,NE=
CM,MF=
CM,
∴NE=FM,NE∥FM,
∴四边形MENF是平行四边形,
:∵四边形ABCD是矩形,
∴AB=DC,∠A=∠D=90°,
∵M为AD中点,
∴AM=DM,
在△ABM和△DCM,
∴△ABM≌△DCM(SAS);
∴BM=CM,
∵E、F分别是BM、CM的中点,
∴ME=MF,
∴平行四边形MENF是菱形.
证明:∵N、E、F分别是BC、BM、CM的中点,
∴NE∥CM,NE=
| 1 |
| 2 |
| 1 |
| 2 |
∴NE=FM,NE∥FM,
∴四边形MENF是平行四边形,
:∵四边形ABCD是矩形,
∴AB=DC,∠A=∠D=90°,
∵M为AD中点,
∴AM=DM,
在△ABM和△DCM,
|
∴△ABM≌△DCM(SAS);
∴BM=CM,
∵E、F分别是BM、CM的中点,
∴ME=MF,
∴平行四边形MENF是菱形.
点评:本题考查了正三角形的中位线,矩形的性质,全等三角形的性质和判定,菱形、平行四边形、正方形的判定的应用,主要考查学生的推理能力.
练习册系列答案
相关题目
下列各组线段能组成三角形的是( )
| A、5cm,8cm,12cm |
| B、2cm,3cm,6cm |
| C、3cm,3cm,6cm |
| D、4cm,7cm,11cm |