题目内容

如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点,请判断四边形MENF是什么特殊四边形,并证明你的结论.
考点:菱形的判定,矩形的性质
专题:
分析:根据三角形中位线定理求出NE∥MF,NE=MF,得出平行四边形,求出BM=CM,推出ME=MF,根据菱形的判定推出即可;
解答:答:四边形MENF是菱形.
证明:∵N、E、F分别是BC、BM、CM的中点,
∴NE∥CM,NE=
1
2
CM,MF=
1
2
CM,
∴NE=FM,NE∥FM,
∴四边形MENF是平行四边形,
:∵四边形ABCD是矩形,
∴AB=DC,∠A=∠D=90°,
∵M为AD中点,
∴AM=DM,
在△ABM和△DCM,
AM=DM
∠A=∠D
AB=CD

∴△ABM≌△DCM(SAS);
∴BM=CM,
∵E、F分别是BM、CM的中点,
∴ME=MF,
∴平行四边形MENF是菱形.
点评:本题考查了正三角形的中位线,矩形的性质,全等三角形的性质和判定,菱形、平行四边形、正方形的判定的应用,主要考查学生的推理能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网