题目内容
20.分析 根据勾股定理求出BD,根据角平分线的性质列出比例式,计算即可.
解答 解:由勾股定理得,DB=$\sqrt{A{D}^{2}+A{B}^{2}}$=10,
由折叠的性质可知,∠ADG=∠BDG,
∴$\frac{AG}{BG}$=$\frac{AD}{BD}$,即$\frac{AG}{8-AG}$=$\frac{6}{10}$,
解得,AG=3,
故答案为:3.
点评 本题考查的是翻转变换的性质、角平分线的性质,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.
练习册系列答案
相关题目
10.菱形两对角线长分别为24cm和10cm,则菱形的高为( ) cm.
| A. | 13 | B. | $\frac{240}{13}$ | C. | 120 | D. | $\frac{120}{13}$ |
15.
2017年全国两会民生话题成为社会焦点.徐州市记者为了了解百姓“两会民生话题”的聚焦点,随机调查了徐州市部分市民,并对调查结果进行整理.绘制了如图所示的不完整的统计图表.
请根据图表中提供的信息解答下列问题:
(1)填空:m=40,n=100.扇形统计图中E组所占的百分比为15%;
(2)徐州市市区人口现有170万人,请你估计其中关注D组话题的市民人数;
(3)若在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是多少?
| 组别 | 焦点话题 | 频数(人数) |
| A | 食品安全 | 80 |
| B | 教育医疗 | m |
| C | 就业养老 | n |
| D | 生态环保 | 120 |
| E | 其他 | 60 |
(1)填空:m=40,n=100.扇形统计图中E组所占的百分比为15%;
(2)徐州市市区人口现有170万人,请你估计其中关注D组话题的市民人数;
(3)若在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是多少?
10.某数学兴趣小组在学习二次根式$\sqrt{{a}^{2}}$=|a|后,研究了如下四个问题,其中错误的是( )
| A. | 在a>1的条件下化简代数式a+$\sqrt{{a}^{2}-2a+1}$的结果为2a-1 | |
| B. | a+$\sqrt{{a}^{2}-2a+1}$的值随a变化而变化,当a取某个数值时,上述代数式的值可以为$\frac{1}{2}$ | |
| C. | 当a+$\sqrt{{a}^{2}-2a+1}$的值恒为定值时,字母a的取值范围是a≤1 | |
| D. | 若$\sqrt{{a}^{2}-2a+1}$=($\sqrt{a-1}$)2,则字母a必须满足a≥1 |