题目内容
如图,E为正方形ABCD对角线BD上的一点,且BE=BC=1.
![]()
(1)求∠DCE的度数;
(2)点P在EC上,作PM⊥BD于M,PN⊥BC于N,求PM+PN的值.
【答案】(1)22.5°,(2)
.
【解析】
试题分析:(1)由正方形的性质得到,∠BCD=90°,∠DBC=45°,推出AB=BE,根据三角形的内角和定理求出∠BCE=∠BEC=67.5°,根据∠DCE=∠DCB-∠BCE即可求出答案.
(2)连接BP,作EF⊥BC于F,则∠EFB=90°,得出△BEF是等腰直角三角形,从而求得BF=EF=
,然后根据S△BPE+S△BPC=S△BEC,求得PM+PN=EF,即可求得.
试题解析:(1)在正方形ABCD中,∠BCD=90°,∠DBC=45°,
∵BE=BC,
∴AB=BE,
∴∠BCE=∠BEC=
(180°-∠DBC)=67.5°,
∴∠DCE=∠DCB-∠BCE=90°-67.5°=22.5°,
(2)连接BP,作EF⊥BC于F,则∠EFB=90°,
![]()
∵∠EBF=45°,
∴△BEF是等腰直角三角形,
∵BE=BC=1,
∴BF=EF=
,
∵PM⊥BD,PN⊥BC,
∴S△BPE+S△BPC=S△BEC,
即
BE•PM+
BC•PN=
BC•EF,
∵BE=BC,
∴PM+PN=EF=
.
考点:1.正方形的性质;2.等腰直角三角形.
【题型】解答题
【结束】
28
如图,一次函数
的图像与反比例函数
(
为常数,且
)的图像交于
两点.
(1)求反比例函数的表达式;
(2)在
轴上找一点
,使
的值最小,求满足条件的点
的坐标;
(3)在(2)的条件下求
的面积.
![]()
练习册系列答案
相关题目