题目内容

两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.

(1)求证:△ABE≌△ACD;

(2)求证:DC⊥BE.

(1)证明见解析;(2)证明见解析. 【解析】试题分析:(1)根据等腰直角三角形的性质,可以得出△ABE≌△ACD; (2)由△ABE≌△ACD可以得出∠B=∠ACD﹣45°,进而得出∠DCB=90°,就可以得出结论. 证明:(1)∵△ABC与△AED均为等腰直角三角形, ∴AB=AC,AE=AD,∠BAC=∠EAD=90°.∠ABC=∠ACB=45°, ∴∠BAC+...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网