ÌâÄ¿ÄÚÈÝ
15£®£¨1£©Ìî¿Õ£ºCDµÄ³¤Îª2£»
£¨2£©ÈôEÊÇBDµÄÖе㣬½«¹ýµãEµÄÖ±ÏßlÈÆEÐýת£¬·Ö±ðÓëÖ±ÏßOA¡¢BCÏཻÓÚµãM¡¢N£¬ÓëÖ±ÏßABÏཻÓÚµãP£¬Á¬½áAE£®
¢ÙÉèPµãµÄ×Ý×ø±êΪt£®µ±¡÷PBE¡×¡÷PEAʱ£¬ÇótµÄÖµ£»
¢ÚÊÔÎÊ£ºÔÚÐýתµÄ¹ý³ÌÖУ¬Ïß¶ÎMNÓëBDÄÜ·ñÏàµÈ£¿ÈôÄÜ£¬ÇëÇó³öCNµÄ³¤£»Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©¸ù¾ÝµãBµÄ×ø±ê£¬¿ÉµÃBC=6£¬ÀûÓÃtan¡ÏCBD=$\frac{1}{3}$£¬¼´¿É½â´ð£»
£¨2£©¢Ùµ±¡÷PBE¡×¡÷PEAʱ£¬$\frac{PA}{PE}=\frac{PE}{PB}$£¬¼´PE2=PA•PB£®¹ýE×÷FG¡ÎBC·Ö±ð½»OC¡¢ABÓÚG¡¢F£¬µÃµ½GEÊÇ¡÷BCDµÄÖÐλÏߣ¬´Ó¶øµÃµ½BF=CG=$\frac{1}{2}CD$=1£¬GE=$\frac{1}{2}BC$=3£¬AF=4£¬EF=3£¬ÓÉPA=|t|£¬PB=|t-5|£¬PF=|t-4|£¬ÀûÓÃÓɹ´¹É¶¨ÀíµÃ£¬PE2=PF2+EF2=£¨t-4£©2+32£¬¸ù¾ÝPE2=PA•PB=|t£¨t-5£©|£¬µÃµ½£¨t-4£©2+32=¡Àt£¨t-5£©£¬½â·½³Ì¼´¿É½â´ð£»
¢ÚMNÓëBDÄÜÏàµÈ£¬ÀíÓÉÈçÏ£ºÀûÓÃÔÚ¾ØÐÎOABCÖУ¬¡ÏBCO=90¡ã£¬CD=2£¬BC=6£¬Çó³öBD=$\sqrt{{2}^{2}+{6}^{2}}=2\sqrt{10}$£¬Èçͼ2£¬¹ýO×÷OQ¡ÎMN£¬½»BCÓÚµãQ£¬ÔòOQ=MN=BD=2$\sqrt{10}$£¬CQ=$\sqrt{15}$£¬´Ó¶øÈ·¶¨Q£¨$\sqrt{15}$£¬5£©£¬Çó³öÖ±ÏßOQµÄº¯Êý¹ØÏµÊ½Îªy=$\frac{\sqrt{15}}{3}$x£®Ö±ÏßMNµÄº¯Êý¹ØÏµÊ½Îªy=$\frac{\sqrt{15}}{3}x$+4-$\sqrt{15}$£®Áîy=5£¬µÃ$\frac{\sqrt{15}}{3}x$+4-$\sqrt{15}$=5£¬
½âµÃ£ºx=$\frac{15+\sqrt{15}}{5}$£¬ËùÒÔ${N}_{1}£¨\frac{15+\sqrt{15}}{5}£¬5£©$£®ÓɾØÐεĶԳÆÐԵãº${N}_{2}£¨\frac{15-\sqrt{15}}{5}£¬5£©$£¬ËùÒÔCN=$\frac{15-\sqrt{15}}{5}$Ò²·ûºÏÌâÒ⣮
½â´ð ½â£º£¨1£©¡ßµãB£¨6£¬5£©£¬
¡àBC=6£¬
ÔÚRt¡÷BCDÖУ¬tan¡ÏCBD=$\frac{CD}{BC}$=$\frac{1}{3}$£¬
¡àCD=$\frac{1}{3}BC=\frac{1}{3}¡Á6$=2£¬
¹Ê´ð°¸Îª£º2£»
£¨2£©¢Ù£ºµ±¡÷PBE¡×¡÷PEAʱ£¬$\frac{PA}{PE}=\frac{PE}{PB}$£¬¼´PE2=PA•PB£®
Èçͼ1£¬¹ýE×÷FG¡ÎBC·Ö±ð½»OC¡¢ABÓÚG¡¢F£¬![]()
¡àGEÊÇ¡÷BCDµÄÖÐλÏߣ¬
¡àBF=CG=$\frac{1}{2}CD$=1£¬GE=$\frac{1}{2}BC$=3
¡àAF=AB-BF=5-1=4£¬EF=GF-GE=6-3=3£¬
¡ßPA=|t|£¬PB=|t-5|£¬PF=|t-4|£¬
ÔÚRt¡÷PFEÖУ¬Óɹ´¹É¶¨ÀíµÃ£¬PE2=PF2+EF2=£¨t-4£©2+32£¬
¡ßPE2=PA•PB=|t£¨t-5£©|
¡à£¨t-4£©2+32=¡Àt£¨t-5£©£®
ÓÉ£¨t-4£©2+32=t£¨t-5£©£¬
½âµÃ£ºt=$\frac{25}{3}$£¬
ÓÉ£¨t-4£©2+32=-t£¨t-5£©µÃ£¬2t2-13t+25=0£¬´Ë·½³ÌûÓÐʵÊý¸ù£¬
¡àt=$\frac{25}{3}$£»
¢ÚMNÓëBDÄÜÏàµÈ£¬ÀíÓÉÈçÏ£º
ÔÚ¾ØÐÎOABCÖУ¬¡ÏBCO=90¡ã£¬CD=2£¬BC=6£¬
¡àBD=$\sqrt{{2}^{2}+{6}^{2}}=2\sqrt{10}$£¬
Èçͼ2£¬¹ýO×÷OQ¡ÎMN£¬½»BCÓÚµãQ£¬![]()
ÔòOQ=MN=BD=2$\sqrt{10}$£¬
CQ=$\sqrt{O{Q}^{2}-O{C}^{2}}=\sqrt{£¨2\sqrt{10}£©^{2}-{5}^{2}}$=$\sqrt{15}$£¬
¡àQ£¨$\sqrt{15}$£¬5£©£¬
Ö±ÏßOQµÄº¯Êý¹ØÏµÊ½Îªy=$\frac{\sqrt{15}}{3}$x£®
ÉèÖ±ÏßMNµÄº¯Êý¹ØÏµÊ½Îªy=$\frac{\sqrt{15}}{3}$x+b£¬°ÑE£¨3£¬4£©´úÈëµÃ£¬$\frac{\sqrt{15}}{3}¡Á3+b=4$£¬
½âµÃ£ºb=4-$\sqrt{15}$£¬
¼´Ö±ÏßMNµÄº¯Êý¹ØÏµÊ½Îªy=$\frac{\sqrt{15}}{3}x$+4-$\sqrt{15}$£®
Áîy=5£¬µÃ$\frac{\sqrt{15}}{3}x$+4-$\sqrt{15}$=5£¬
½âµÃ£ºx=$\frac{15+\sqrt{15}}{5}$£¬
¡à${N}_{1}£¨\frac{15+\sqrt{15}}{5}£¬5£©$£®
ÓɾØÐεĶԳÆÐԵãº${N}_{2}£¨\frac{15-\sqrt{15}}{5}£¬5£©$£®
¡àCN=$\frac{15-\sqrt{15}}{5}$Ò²·ûºÏÌâÒ⣮
¹ÊCN=$\frac{15¡À\sqrt{15}}{5}$£®
µãÆÀ ±¾ÌâÊôÓÚ¼¸ºÎ±ä»»×ÛºÏÌ⣬¿¼²éÁËÏàËÆÈý½ÇÐεÄÐÔÖʺÍÅж¨¡¢¹´¹É¶¨Àí¡¢ÐýתµÄÐÔÖÊ¡¢´ý¶¨ÏµÊý·¨Çó½âÎöʽ£¬½â¾ö±¾ÌâµÄ¹Ø¼üÊǸ¨ÖúÏßµÄ×ö·¨£¬½áºÏͼÏóÓôý¶¨ÏµÊý·¨ÇóÖ±ÏߵĽâÎöʽ£®
| A£® | 45¡ã | B£® | 55¡ã | C£® | 65¡ã | D£® | 75¡ã |
| A£® | $\frac{3}{2}$ | B£® | $\frac{2}{3}$ | C£® | $\frac{3}{4}$ | D£® | $\frac{4}{3}$ |
| A£® | 4¦Ð-2 | B£® | 2¦Ð-2 | C£® | 4¦Ð-4 | D£® | 2¦Ð-4 |
| x | 0 | 1 | 2 | 3 | 4 | 5 |
| y | 10 | 10.5 | 11 | 11.5 | 12 | 12.5 |
| A£® | xÓëy¶¼ÊDZäÁ¿£¬ÇÒxÊÇ×Ô±äÁ¿£¬yÊÇÒò±äÁ¿ | |
| B£® | Ëù¹ÒÎïÌåÖÊÁ¿Îª4kgʱ£¬µ¯»É³¤¶ÈΪ12cm | |
| C£® | µ¯»É²»¹ÒÖØÎïʱµÄ³¤¶ÈΪ0cm | |
| D£® | ÎïÌåÖÊÁ¿Ã¿Ôö¼Ó1kg£¬µ¯»É³¤¶ÈyÔö¼Ó0.5cm |
| A£® | 3ÅÅ5×ù | B£® | 5ÅÅ3×ù | C£® | 5ÅÅ5×ù | D£® | 3ÅÅ3×ù |