题目内容
5.已知方程3x2-x-3=0的两根为x1和x2,不解方程求下列各式的值(1)x${\;}_{1}^{2}$+x${\;}_{2}^{2}$;
(2)|x1-x2|;
(3)x${\;}_{1}^{3}$+x${\;}_{2}^{3}$.
分析 根据根与系数的关系找出“x1+x2=$\frac{1}{3}$,x1•x2=-1”,再将(1)(2)(3)中算式变形为只含两根之和与两根之积的形式,代入数据即可得出结论.
解答 解:∵方程3x2-x-3=0的两根为x1和x2,
∴x1+x2=$\frac{1}{3}$,x1•x2=-1.
(1)${{x}_{1}}^{2}+{{x}_{2}}^{2}$=$({x}_{1}+{x}_{2})^{2}$-2x1•x2=$(\frac{1}{3})^{2}$-2×(-1)=$\frac{19}{9}$;
(2)|x1-x2|=$\sqrt{({x}_{1}-{x}_{2})^{2}}$=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}•{x}_{2}}$=$\sqrt{(\frac{1}{3})^{2}-4×(-1)}$=$\frac{\sqrt{37}}{3}$;
(3)${{x}_{1}}^{3}+{{x}_{2}}^{3}$=(x1+x2)(${{x}_{1}}^{2}$-x1•x2+${{x}_{2}}^{2}$)=(x1+x2)[$({x}_{1}+{x}_{2})^{2}$-3x1•x2]=$\frac{1}{3}$×[$(\frac{1}{3})^{2}$-3×(-1)]=$\frac{28}{27}$.
点评 本题考查了根与系数的关系,解题的关键是:(1)将算式变形为$({x}_{1}+{x}_{2})^{2}$-2x1•x2;(2)将算式变形为$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}•{x}_{2}}$;(3)将算式变形为(x1+x2)[$({x}_{1}+{x}_{2})^{2}$-3x1•x2].本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和、两根之积是关键.
| A. | (5x2-5)(x2-1)(1-x) | B. | 5(x2-1)(1-x) | C. | 5(x2-1)(x+1) | D. | 5(x+1)(x-1) |
| A. | 矩形 | B. | 平行四边形 | C. | 直角梯形 | D. | 等腰梯形 |
| A. | 0或2 | B. | 0或1 | C. | 1或2 | D. | 0,1,或2 |