题目内容
如图,正方形ABCD的边长为4,E为BC上一点,BE=1,F为AB上一点,AF=2,P为AC上一点,则PF+PE的最小值为 .
![]()
![]()
![]()
.
【考点】轴对称-最短路线问题;正方形的性质.
【分析】作E关于直线AC的对称点E′,连接E′F,则E′F即为所求,过F作FG⊥CD于G,在Rt△E′FG中,利用勾股定理即可求出E′F的长.
【解答】解:作E关于直线AC的对称点E′,连接E′F,则E′F即为所求,
![]()
![]()
过F作FG⊥CD于G,
在Rt△E′FG中,
GE′=CD﹣BE﹣BF=4﹣1﹣2=1,GF=4,
所以E′F=![]()
.
故答案为:![]()
.
练习册系列答案
相关题目