题目内容


如图,菱形ABCD中,对角线AC=6,BD=8,M、N分别是BC、CD的中点,P是线段BD上的一个动点,则PM+PN的最小值是      


5 

【考点】轴对称-最短路线问题;勾股定理的应用;平行四边形的判定与性质;菱形的性质.

【分析】作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、PB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.

【解答】解:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,

∵四边形ABCD是菱形,

∴AC⊥BD,∠QBP=∠MBP,

即Q在AB上,

∵MQ⊥BD,

∴AC∥MQ,

∵M为BC中点,

∴Q为AB中点,

∵N为CD中点,四边形ABCD是菱形,

∴BQ∥CD,BQ=CN,

∴四边形BQNC是平行四边形,

∴NQ=BC,

∵四边形ABCD是菱形,

∴CP=AC=3,BP=BD=4,

在Rt△BPC中,由勾股定理得:BC=5,

即NQ=5,

∴MP+NP=QP+NP=QN=5,

故答案为:5.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网