题目内容
19.| A. | DG=$\frac{1}{2}$(a+b) | B. | CF=c-b | C. | BE=$\frac{1}{2}$(a-b) | D. | AE=$\frac{1}{2}$(b+c) |
分析 如图,连接DB、DC.只要证明△DEB≌△DFC,推出BE=CF,由△ADE≌△ADF,推出AE=AF,推出AB+AC=(AE+BE)+(AF-CF)=2AE,即AE=$\frac{1}{2}$(AB+AC).
解答 解:如图,连接DB、DC.![]()
∵AD平分∠BAC,DE⊥AB,DF⊥AC,
∴DE=DF,∠DEB=∠DFC=90°,
∵DG垂直平分线段BC,
∴DB=DC,
在Rt△DEB和Rt△DFC中,
$\left\{\begin{array}{l}{DB=DC}\\{DE=DF}\end{array}\right.$,
∴△DEB≌△DFC,
∴BE=CF,
同理△ADE≌△ADF,
∴AE=AF,
∴AB+AC=(AE+BE)+(AF-CF)=2AE,
∴AE=$\frac{1}{2}$(AB+AC)=$\frac{1}{2}$(b+c),
故选D.
点评 本题考查全等三角形的判定和性质、角平分线的性质定理、线段的垂直平分线的性质定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
练习册系列答案
相关题目
11.在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2017B2017C2017D2017的边长是( )

| A. | ($\frac{1}{2}$)2014 | B. | ($\frac{1}{2}$)2015 | C. | ($\frac{\sqrt{3}}{3}$)2016 | D. | ($\frac{\sqrt{3}}{3}$)2017 |