题目内容
1.分析 根据图象解答看两个函数的交点所对应的自变量的取值是多少即可.
解答 解:利用图象即可得出:当行驶路程为1500千米时,租用两家车的费用相同.
故答案为1500.
点评 此题主要考查了一次函数的应用,搞清楚交点意义是解决本题的关键.
练习册系列答案
相关题目
11.已知$\left\{\begin{array}{l}{x=2}\\{y=-2}\\{z=4}\end{array}\right.$是方程组$\left\{\begin{array}{l}{ax-\frac{1}{2}by+\frac{1}{4}cz=4}\\{\frac{1}{2}ax-by+\frac{1}{4}cz=2}\\{\frac{1}{2}ax-\frac{1}{2}by+\frac{1}{2}cz=6}\end{array}\right.$的解,则a,b,c的值( )
| A. | a=1,b=-1,c=3 | B. | a=-1,b=1,c=3 | C. | a=1,b=-1,c=-3 | D. | a=-1,b=1,c=-3 |
9.已知方程x2+nx-1=0的两实数根分别为α、β,则$\frac{β}{α}$+$\frac{α}{β}$的值为( )
| A. | n2+2 | B. | -n2+2 | C. | n2-2 | D. | -n2-2 |
16.若不等式组$\left\{\begin{array}{l}{a-x>0}\\{x+1>0}\end{array}\right.$无解,则a的取值范围是( )
| A. | a≥-1 | B. | a≤-1 | C. | a>-1 | D. | a<-1 |
13.下列方程中:①x+y=x2;②$\frac{{x}^{3}}{x}$-x=0;③(x2-1)(x+1)=x(5+x);④$\sqrt{5}$t2-6t=0;⑤y2=6;⑥$\frac{x}{3}$-1=$\frac{{x}^{2}}{4}$,属于一元二次方程的是( )
| A. | ①④⑤ | B. | ③④⑤ | C. | ④⑤⑥ | D. | ②⑤⑥ |
10.小明用17元买了1支笔和某种笔记本3个,已知笔记本的单价比笔的单价的2倍还多1元,设笔每支x元,笔记本每本y元,则所列方程组为( )
| A. | $\left\{\begin{array}{l}{x+3y=17}\\{x=2y+1}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x+3y=17}\\{y=2x+1}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{y+3x=17}\\{x=2y+1}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{y+3x=17}\\{y=2x+1}\end{array}\right.$ |
11.下列说法错误的是( )
| A. | 42的算术平方根为4 | B. | $\sqrt{4}$的算术平方根为$\sqrt{2}$ | ||
| C. | $\sqrt{{3}^{2}}$的算术平方根是$\sqrt{3}$ | D. | $\sqrt{81}$的算术平方根是9 |