题目内容
18.【问题背景】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,某教学小组继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】小组成员先将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类探究:可按“∠B是直角、钝角、锐角”三种情况进行.
【深入探究】
第一种情况:当∠B是直角时:
如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,可知:△ABC与△DEF一定全等,依据的判定方法是HL.
第二种情况:当∠B是钝角时:
在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,试判断△ABC与△DEF是否全等.
小组成员作了如下推理,请你接着完成证明:
证明:如图②,过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE的延长线于H.
∵∠B=∠E,且∠B、∠E都是钝角.
∴180°-∠B=180°-∠E,
即∠CBG=∠FEH.
在△CBG和△FEH中,
$\left\{\begin{array}{l}{∠CBG=∠FEH}\\{∠G=∠H=90°}\\{BC=EF}\end{array}\right.$
∴△CBG≌△FEH(AAS).
∴CG=FH
第三种情况:当∠B是锐角时:
在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,小明在△ABC中(如图③)以点C为圆心,以AC长为半径画弧交AB于点D,假设E与B重合,F与C重合,得到△DEF与△ABC符号已知条件,但是△AEF与△ABC一定不全等:
综上探究,该小明的结论是:有两边和其中一边的对角对应相等的两个三角形不一定全等.
【拓展延伸】:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B满足∠B≥∠A条件时,就可以使△ABC≌△DEF(请直接写出结论)
分析 (1)根据直角三角形全等的方法“HL”证明;
(2)过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;
(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;
(4)根据三种情况可得结论,∠B不小于∠A即可.
解答 解:(1)△ABC与△DEF一定全等,依据的判定方法是HL;
(2)证明:如图,![]()
过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE的延长线于H,
∵∠B=∠E,且∠B、∠E都是钝角,
∴180°-∠B=180°-∠E,
即∠CBG=∠FEH,
在△CBG和△FEH中,
$\left\{\begin{array}{l}{∠CBG=∠FEH}\\{∠G=∠H}\\{BC=EF}\end{array}\right.$,
∴△CBG≌△FEH(AAS),
∴CG=FH,
在Rt△ACG和Rt△DFH中,
$\left\{\begin{array}{l}{AC=DF}\\{CG=FH}\end{array}\right.$,
∴Rt△ACG≌Rt△DFH(HL),
∴∠A=∠D,
在△ABC和△DEF中,
$\left\{\begin{array}{l}{∠A=∠D}\\{∠B=∠E}\\{AC=DF}\end{array}\right.$,
∴△ABC≌△DEF(AAS);
(3)小明的结论是:有两边和其中一边的对角对应相等的两个三角形不一定全等;![]()
(4)若∠B≥∠A,则△ABC≌△DEF.
如图,![]()
过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE的延长线于H,
∵∠B=∠E,且∠B、∠E都是锐角,
∴180°-∠B=180°-∠E,
即∠CBG=∠FEH,
在△CBG和△FEH中,
$\left\{\begin{array}{l}{∠CBG=∠FEH}\\{∠G=∠H}\\{BC=EF}\end{array}\right.$,
∴△CBG≌△FEH(AAS),
∴CG=FH,
在Rt△ACG和Rt△DFH中,
$\left\{\begin{array}{l}{AC=DF}\\{CG=FH}\end{array}\right.$,
∴Rt△ACG≌Rt△DFH(HL),
∴∠A=∠D,
在△ABC和△DEF中,
$\left\{\begin{array}{l}{∠A=∠D}\\{∠B=∠E}\\{AC=DF}\end{array}\right.$,
∴△ABC≌△DEF(AAS).
点评 本题考查了全等三角形的性质和判定的应用,能求出Rt△ABD≌Rt△ACD是解此题的关键,注意:全等三角形的对应角相等,对应边相等
| A. | x1=1,x2=-5 | B. | x1=-1,x2=-5 | C. | x1=1,x2=5 | D. | x1=-1,x2=5 |
| 品牌类型 | 月租费(元) | 必选业务套餐费(元) | 本地通话费(元/分钟) | 长途通话费(元/分钟) |
| 动感地带 | 0 | 18 | 0.3 | 0.6 |
| 神州行 | 10 | 5 | 0.4 | 0.6 |
| 全球通 | 0 | 68 | 1~288分钟免费,超过288分钟 0.2元/分钟(不区分长途通话和本地通话) | |
(2)现在移动公司又推出了新的两项优惠活动:优惠活动一,1元绑定亲情号码,给亲情号码打电话免费.动感地带最多可以绑定1个,神州行最多可以绑定2个,全球通最多可以绑定3个亲情号码;优惠活动二,集团业务每月5元,集团网内部通话免费.那么小明参加优惠活动吗?如果小明参加优惠活动,参加活动后比原来节约多少话费?(假如小明的朋友都加入了平江县的某集团网,两项优惠活动可以同时参加).
| A. | 10° | B. | 15° | C. | 25° | D. | 65° |
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
| A. | 甲班打乒乓球人数比乙班少2个 | B. | 甲班踢足球人数比乙班多3个 | ||
| C. | 这两班练体操的人数最少 | D. | 这两班练田径的人数不同 |