题目内容
13.三角形的两边分别为2和6,第三边是方程x2-10x+21=0的解,则第三边的长为7.分析 将已知的方程x2-10x+21=0左边分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解得到原方程的解为3或7,利用三角形的两边之和大于第三边进行判断,得到满足题意的第三边的长
解答 解:x2-10x+21=0,
因式分解得:(x-3)(x-7)=0,
解得:x1=3,x2=7,
∵三角形的第三边是x2-10x+21=0的解,
∴三角形的第三边为3或7,
当三角形第三边为3时,2+3<6,不能构成三角形,舍去;
当三角形第三边为7时,三角形三边分别为2,6,7,能构成三角形,
所以第三边的长为7.
故答案为7.
点评 此题考查了利用因式分解法求一元二次方程的解,以及三角形的边角关系,利用因式分解法解方程时,首先将方程右边化为0,左边分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化两个一次方程来求解
练习册系列答案
相关题目
1.点A(3,-4)关于原点的对称点为( )
| A. | (3,4) | B. | (-3,4) | C. | (-3,-4) | D. | (4,3) |