题目内容

11.如图,已知AB=2,AD=4,∠DAB=90°,AD∥BC.E是射线BC上的动点(点E与点B不重合),M是线段DE的中点,连结BD,交线段AM于点N,如果以A、N、D为顶点的三角形与△BME相似,则线段BE的长为(  )
A.3B.6C.3或8D.2或8

分析 因为如果三角形ADN和BME相似,一定不相等的角是∠ADN和∠MBE,因为AD∥BC,如果两角相等,那么M与D重合,显然不合题意,故应分两种情况进行讨论.

解答 解:因为如果三角形ADN和BME相似,一定不相等的角是∠ADN和∠MBE,因为AD∥BC,如果两角相等,那么M与D重合,显然不合题意,故应分两种情况进行讨论.
①如图1,当∠ADN=∠BEM时,那么∠ADB=∠BEM,
作DF⊥BE,垂足为F,
tan∠ADB=tan∠BEM.
AB:AD=DF:FE=AB:(BE-AD).
即2:4=2:(x-4).
解得x=8.
即BE=8.
②如图2,当∠ADB=∠BME
而∠ADB=∠DBE,
∴∠DBE=∠BME,
∵∠E是公共角,
∴△BED∽△MEB,
∴$\frac{DE}{BE}$=$\frac{BE}{EM}$,
BE2=DE•EM,
∴BE2=$\frac{1}{2}$[22+(x-4)2],
∴x1=2,x2=-10(舍去),
∴BE=2.
综上所述线段BE为8或2,
故选D.

点评 本题考查相似三角形的判定和性质、锐角三角函数、平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网