题目内容

17.如图,已知函数y=-$\frac{1}{2}$x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2.
(1)求点A的坐标;
(2)在x轴上有一点动点P (a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=-$\frac{1}{2}$x+b和y=x的图象于点C、D,且OB=2CD,求a的值.

分析 (1)先利用直线y=x上的点的坐标特征得到点M的坐标为(2,2),再把M(2,2)代入y=-$\frac{1}{2}$x+b可计算出b=3,得到一次函数的解析式为y=-$\frac{1}{2}$x+3,然后根据x轴上点的坐标特征可确定A点坐标为(6,0);
(2)先确定B点坐标为(0,3),则OB=2CD=3,再表示出C点坐标为(a,-$\frac{1}{2}$a+3),D点坐标为(a,a),所以a-(-$\frac{1}{2}$a+3)=$\frac{3}{2}$,然后解方程即可.

解答 解:(1)∵点M在函数y=x的图象上,且横坐标为2,
∴点M的纵坐标为2.
∵点M(2,2)在一次函数y=-$\frac{1}{2}$x+b的图象上,
∴-$\frac{1}{2}$×2+b=2,
∴b=3,
∴一次函数的表达式为y=-$\frac{1}{2}$x+3,令y=0,得x=6,
∴点A的坐标为(6,0).               
(2)由题意得:C(a,-$\frac{1}{2}$a+3),D(a,a),
∴CD=a-(-$\frac{1}{2}$a+3).             
∵OB=2CD,
∴a-(-$\frac{1}{2}$a+3)=$\frac{3}{2}$,
∴a=3.

点评 本题考查了两条直线相交或平行问题,待定系数法求函数解析式,两条直线的交点坐标,适合每个一次函数表达式;数形结合,直观解决问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网