题目内容
7.分析 根据角平分线上的点到角的两边的距离相等可得点O到AB、AC、BC的距离都相等,从而可得到△ABC的面积等于周长的一半乘以OD,然后列式进行计算即可求解.
解答
解:如图,连接OA,
∵OB、OC分别平分∠ABC和∠ACB,
∴点O到AB、AC、BC的距离都相等,
∵△ABC的周长是22,OD⊥BC于D,且OD=3,
∴S△ABC=$\frac{1}{2}$×22×3=33.
点评 本题考查了角平分线上的点到角的两边的距离相等的性质,判断出三角形的面积与周长的关系是解题的关键.
练习册系列答案
相关题目
2.
如图,将Rt△ABC,其中∠B=30°,∠C=90°,AC=1,绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么,点B所运动的路径长( )
| A. | 2$\sqrt{3}$ | B. | 4 | C. | $\frac{4π}{3}$ | D. | $\frac{2\sqrt{3}π}{3}$ |