题目内容

6.如图1,将一块等腰直角三角板ABC的直角顶点C置于直线l上,图2是由图1抽象出的几何图形,过A、B两点分别作直线l的垂线,垂足分别为D、E.
(1)求证:△ACD≌△CBE;
(2)猜想线段AD、BE、DE之间的关系,并说明理由.

分析 (1)观察图形,结合已知条件,可知全等三角形为:△ACD与△CBE.根据AAS即可证明;
(2)由(1)知△ACD≌△CBE,根据全等三角形的对应边相等,得出CD=BE,AD=CE,从而求出线段AD、BE、DE之间的关系.

解答 证明:(1)∵AD⊥CE,BE⊥CE,
∴∠ADC=∠CEB=90°,
又∵∠ACB=90°,
∴∠ACD=∠CBE=90°-∠ECB.
在△ACD与△CBE中,
$\left\{\begin{array}{l}{∠ADC=∠CEB}\\{∠ACD=∠CBE}\\{AC=BC}\end{array}\right.$,
∴△ACD≌△CBE(AAS);
(2)AD=BE-DE,理由如下:
∵△ACD≌△CBE,
∴CD=BE,AD=CE,
又∵CE=CD-DE,
∴AD=BE-DE

点评 本题考查全等三角形的判定与性质,余角的性质,关键是根据AAS证明三角形全等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网