题目内容
(1)求抛物线顶点M的坐标(用含m的代数式表示)及A、B两点的坐标;
(2)当m变化时,试证明△BCM与△ABC的面积比值是定值,并求出此定值;
(3)若线段CM的垂直平分线过B点,求抛物线方程.
考点:二次函数综合题
专题:
分析:(1)将抛物线的解析式化为顶点坐标式,即可得到顶点M的坐标;抛物线的解析式中,令y=0,可求得A、B的坐标.
(2)易求得C点坐标,即可得到OC的长,以AB为底,OC为高,即可求出△ABC的面积;△BCM的面积无法直接求得,可用割补法求解,过M作MD⊥x轴于D,根据B、C、M四点坐标,可分别求出梯形OCMD、△BDM的面积,它们的面积和减去△BOC的面积即为△BCM的面积,进而可得到△ABC、△BCM的面积比.
(3)根据线段CM的垂直平分线过B点可以得到CM=CB,利用两点之间的距离公式列出方程求得m的值即可.
(2)易求得C点坐标,即可得到OC的长,以AB为底,OC为高,即可求出△ABC的面积;△BCM的面积无法直接求得,可用割补法求解,过M作MD⊥x轴于D,根据B、C、M四点坐标,可分别求出梯形OCMD、△BDM的面积,它们的面积和减去△BOC的面积即为△BCM的面积,进而可得到△ABC、△BCM的面积比.
(3)根据线段CM的垂直平分线过B点可以得到CM=CB,利用两点之间的距离公式列出方程求得m的值即可.
解答:解:(1)∵y=mx2-2mx-3m=m(x2-2x-3)=m(x-1)2-4m,
∴抛物线顶点M的坐标为(1,-4m);(2分)
∵抛物线y=mx2-2mx-3m(m>0)与x轴交于A、B两点,
∴当y=0时,mx2-2mx-3m=0,
∵m>0,
∴x2-2x-3=0;
解得x1=-1,x2=3,
∴A、B两点的坐标为(-1,0)、(3,0).
(2)当x=0时,y=-3m,
∴点C的坐标为(0,-3m).
∴S△ABC=
|3-(-1)|×|-3m|=6|m|=6m.
过点M作MD⊥x轴于点D,则OD=1,BD=OB-OD=2,
MD=|-4m|=4m.
∴S△BCM=S△BDM+S梯形OCMD-S△OBC
=
BD•DM+
(OC+OM)•OD-
OB•BC
=
×2×4m+
(3m+4m)×1-
×3×3m
=3m.
∴S△BCM:S△ABC=1:2,
故答案为:
;
(3)∵线段CM的垂直平分线过B点,
∴BM=BC,
∵抛物线y=mx2-2mx-3m(m>0)的顶点M的坐标为(1,-4m),B(3,0),C(0,-3m),
∴32+(3m)2=(3-1)2-(4m)2,
解得:m=
.
故解析式为:y=
x2-
x-
.
∴抛物线顶点M的坐标为(1,-4m);(2分)
∵抛物线y=mx2-2mx-3m(m>0)与x轴交于A、B两点,
∴当y=0时,mx2-2mx-3m=0,
∵m>0,
∴x2-2x-3=0;
解得x1=-1,x2=3,
∴A、B两点的坐标为(-1,0)、(3,0).
(2)当x=0时,y=-3m,
∴点C的坐标为(0,-3m).
∴S△ABC=
| 1 |
| 2 |
过点M作MD⊥x轴于点D,则OD=1,BD=OB-OD=2,
∴S△BCM=S△BDM+S梯形OCMD-S△OBC
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=3m.
∴S△BCM:S△ABC=1:2,
故答案为:
| 1 |
| 2 |
(3)∵线段CM的垂直平分线过B点,
∴BM=BC,
∵抛物线y=mx2-2mx-3m(m>0)的顶点M的坐标为(1,-4m),B(3,0),C(0,-3m),
∴32+(3m)2=(3-1)2-(4m)2,
解得:m=
| ||
| 7 |
故解析式为:y=
| ||
| 7 |
2
| ||
| 7 |
3
| ||
| 7 |
点评:本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法.在求有关动点问题时要注意分析题意分情况讨论结果.
练习册系列答案
相关题目