题目内容
14.| A. | 2$\sqrt{5}$ | B. | 3$\sqrt{5}$ | C. | $\frac{9}{2}$ | D. | $\frac{25}{4}$ |
分析 先连接EF交AC于O,由矩形ABCD中,四边形EGFH是菱形,易证得△CFO≌△AOE(AAS),即可得OA=OC,然后由勾股定理求得AC的长,继而求得OA的长,又由△AOE∽△ABC,利用相似三角形的对应边成比例,即可求得答案.
解答
解:如图,连接EF,交AC于O,
∵四边形EGFH是菱形,
∴EF⊥AC,OE=OF,
∵四边形ABCD是矩形,
∴∠B=∠D=90°,AB∥CD,
∴∠ACD=∠CAB,
在△CFO与△AOE中,
$\left\{\begin{array}{l}{∠FCO=∠OAB}\\{∠FOC=∠AOE}\\{OF=OE}\end{array}\right.$,
∴△CFO≌△AOE(AAS),
∴AO=CO,
∵AC=$\sqrt{A{B}^{2}+B{C}^{2}}$=10,
∴AO=$\frac{1}{2}$AC=5,
∵∠CAB=∠CAB,∠AOE=∠B=90°,
∴△AOE∽△ABC,
∴$\frac{AO}{AB}$=$\frac{AE}{AC}$,
∴$\frac{5}{8}$=$\frac{AE}{10}$,
∴AE=$\frac{25}{4}$.
故选:D.
点评 此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质,准确作出辅助线是解此题的关键.
练习册系列答案
相关题目
9.设n为正整数,且n<$\sqrt{51}$<n+1,则n的值为( )
| A. | 5 | B. | 6 | C. | 7 | D. | 8 |
4.2017的相反数是( )
| A. | 2017 | B. | -2017 | C. | $\frac{1}{2017}$ | D. | -$\frac{1}{2017}$ |