题目内容

19.如图,直线l过正方形ABCD的顶点B,点A、点C到直线l的距离分别是3和4,则该正方形中AC的长是5$\sqrt{2}$.

分析 由正方形的性质可以得出∠ABC=90°,AB=BC,结合∠ABE+∠CBF=90°,进而得出∠ABE=∠BCF,就有△ABE≌△BCF,AE=BF,利用勾股定理即可求出答案.

解答 解:如图,
∵四边形ABCD是正方形,
∴∠ABC=90°,AB=BC,
∴∠ABE+∠CBF=90°.
∵∠AEB=∠CFB=90°,
∴∠CBF+∠BCF=90°,
∴∠ABE=∠BCF.
在△ABE和△BCF中,
$\left\{\begin{array}{l}{∠AEB=∠CFB}\\{∠ABE=∠BCF}\\{AB=BC}\end{array}\right.$,
∴Rt△ABE≌Rt△BCF(AAS),
∴AE=BF.
∵AE=3,
∴BF=3,
在At△BFC中,由勾股定理,得BC=$\sqrt{{3}^{2}+{4}^{2}}$=5,
∴AC=$\sqrt{{5}^{2}+{5}^{2}}$=5$\sqrt{2}$,
故答案为5$\sqrt{2}$.

点评 本题考查了正方形的性质的运用,直角三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,解答时证明三角形全等是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网