题目内容

7.如图,在正方形ABCD中,点E(与点B、C不重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点F作BC的垂线交BC的延长线于点G,连接CF.
(1)求证:△ABE≌△EGF;
(2)若AB=2,S△ABE=2S△ECF,求BE.

分析 (1)根据同角的余角相等得到一对角相等,再由一对直角相等,且AE=EF,利用AAS得到三角形ABE与三角形EFG全等;
(2)利用全等三角形的性质得出AB=EG=2,S△ABE=S△EGF,求出SEGF=2S△ECF,根据三角形面积得出EC=CG=1,根据正方形的性质得出BC=AB=2,即可求出答案.

解答 (1)证明:∵EF⊥AE,
∴∠AEB+∠GEF=90°,
又∵∠AEB+∠BAE=90°,
∴∠GEF=∠BAE,
又∵FG⊥BC,
∴∠ABE=∠EGF=90°,
在△ABE与△EGF中,
$\left\{\begin{array}{l}{∠ABE=∠EGF}\\{∠BAE=∠GEF}\\{AE=EF}\end{array}\right.$,
∴△ABE≌△EGF(AAS);

(2)解:∵△ABE≌△EGF,AB=2,
∴AB=EG=2,S△ABE=S△EGF
∵S△ABE=2S△ECF
∴SEGF=2S△ECF
∴EC=CG=1,
∵四边形ABCD是正方形,
∵BC=AB=2,
∴BE=2-1=1.

点评 此题属于四边形综合题,涉及的知识有:全等三角形的判定与性质,正方形的性质,三角形的面积,熟练掌握判定与性质是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网