题目内容

10.如图,已知△ABC,直线PQ垂直平分AC,与边AB交于点E,连接CE,过点C作CF∥BA交PQ于点F,连接AF.
(1)求证:△AED≌△CFD;
(2)求证:四边形AECF是菱形.
(3)若ED=6,AE=10,则菱形AECF的面积是多少?

分析 (1)由PQ为线段AC的垂直平分线得到AE=CE,AD=CD,然后根据CF∥AB得到∠EAC=∠FCA,∠CFD=∠AED,利用ASA证得两三角形全等即可;
(2)根据全等得到AE=CF,然后根据EF为线段AC的垂直平分线,得到EC=EA,FC=FA,从而得到EC=EA=FC=FA,利用四边相等的四边形是菱形判定四边形AECF为菱形;
(3)由菱形的性质和勾股定理求出AD,得出AC的长,由菱形的面积公式即可得出结果.

解答 (1)证明:∵PQ为线段AC的垂直平分线,
,∴AE=CE,AD=CD,
∵CF∥AB,
∴∠EAC=∠FCA,∠CFD=∠AED,
在△AED与△CFD中,$\left\{\begin{array}{l}{EAC=∠FCA}&{\;}\\{∠CFD=∠AED}&{\;}\\{AD=CD}&{\;}\end{array}\right.$
∴△AED≌△CFD(AAS);
(2)证明:∵△AED≌△CFD,
∴AE=CF,
∵EF为线段AC的垂直平分线,
∴EC=EA,FC=FA,
∴EC=EA=FC=FA,
∴四边形AECF为菱形;
(3)解:∵四边形AECF是菱形,
∴AC⊥EF,
∵ED=6,AE=10,
∴EF=2ED=12,AD=$\sqrt{1{0}^{2}-{6}^{2}}$=8.
∴AC=2AD=16,
∴菱形AECF的面积=$\frac{1}{2}$AC•EF=$\frac{1}{2}$×16×12=96.

点评 本题考查了菱形的判定与性质、全等的判定与性质、盖棺定论、基本作图、线段垂直平分线的性质,解题的关键是了解通过作图能得到直线的垂直平分线.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网