题目内容

如图,△ABC中∠C=90°,AB的垂直平分线DE交BC于点E,D为垂足,且EC=DE,则∠B的度数为
 
考点:线段垂直平分线的性质
专题:
分析:首先连接AE,由AB的垂直平分线DE交BC于点E,D为垂足,可得AE=BE,又由EC=DE,易证得AE平分∠CAB,继而求得答案.
解答:解:连接AE,
∵AB的垂直平分线DE交BC于点E,D为垂足,
∴AE=BE,
∴∠EAB=∠B,
∵△ABC中,∠C=90°,且EC=DE,
∴AE平分∠CAB,
∴∠CAE=∠EAB,
∴∠CAB=2∠B,
∵∠CAB+∠B=90°,
∴∠B=30°.
故答案为:30°.
点评:此题考查了线段垂直平分线的性质以及角平分线的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网