ÌâÄ¿ÄÚÈÝ
13£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏßy=-$\frac{1}{2}$x2+tx+t+$\frac{1}{2}$ÓëxÖá½»ÓÚA¡¢BÁ½µã£¨µãAÔÚµãBµÄ×ó²à £©£¬Æä¶¥µãMÔÚÖ±Ïßy=2xÉÏ£®£¨1£©ÇótµÄÖµ£»
£¨2£©Èçͼ£¬CΪÏß¶ÎOMÉÏÒ»µã£¬¹ýC×÷xÖáµÄƽÐÐÏß½»Ïß¶ÎBMÓÚµãD£¬ÒÔCDΪ±ßÏòÉÏ×÷Õý·½ÐÎCDEF£¬CF¡¢DE·Ö±ð½»´ËÅ×ÎïÏßÓÚP¡¢QÁ½µã£¬ÊÇ·ñ´æÔÚÕâÑùµÄµãC£¬Ê¹µÃÕý·½ÐÎCDEFµÄÃæ»ýµÄÖܳ¤Ç¡ºÃ±»Ö±ÏßPQƽ·Ö£¿Èô´æÔÚ£¬ÇóCµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©½«´ËÅ×ÎïÏßA¡¢BÖ®¼äµÄ²¿·Ö£¨º¬µãA ºÍµãB£©ÏòÓÒÆ½ÒÆn£¨n£¾0£©¸öµ¥Î»ºóµÃµ½µÄͼÏó¼ÇΪG£¬Í¬Ê±½«Ö±y=4x+6ÏòÏÂÆ½ÒÆn¸öµ¥Î»£®Çë½áºÏͼÏó»Ø´ð£ºÆ½ÒƺóµÄÖ±ÏßÓëͼÏóGÓй«¹²µãʱ£¬nµÄȡֵ·¶Î§£®
·ÖÎö £¨1£©ÀûÓöþ´Îº¯Êý¶¥µã×ø±êÇ󷨽áºÏ¶¥µãMÔÚÖ±Ïßy=2xÉÏ£¬µÃ³ö¹ØÓÚtµÄµÈʽÇó³ö¼´¿É£»
£¨2£©Ê×ÏÈÇó³öÖ±ÏßMBµÄ½âÎöʽ£¬½ø¶ø±íʾ³öE£¬F£¬P£¬QµÄ×ø±ê£¬ÀûÓÃÕý·½ÐÎCDEFµÄÃæ»ýµÄÖܳ¤Ç¡ºÃ±»Ö±ÏßPQƽ·Ö£¬ÔòCP=EQ£¬Çó³ömµÄÖµ¼´¿É£»
£¨3£©Ê×ÏȼÙÉèÆ½ÒÆºóµÄÖ±ÏßÓëÆ½ÒÆµÄ¶þ´Îº¯ÊýÏàÇУ¬Ôò·½³Ì4x+6+n=-$\frac{1}{2}$£¨x-3+n£©£¨x+1+n£©ÓÐÁ½¸öÏàµÈµÄʵÊý¸ù£¬Çó³önµÄÖµ²»ºÏÌâÒ⣬ÔÙÀûÓÃÆ½ÒƺóµÄÖ±ÏßÓëÆ½ÒÆºóµÄÅ×ÎïÏß²»ÏàÇУ¬½áºÏͼÏó¿ÉÖª£¬Æ½ÒƺóµÄÖ±ÏßÓëÅ×ÎïÏßGÓÐÁ½¸ö¹«¹²µã£¬ÔòÕâÁ½¸öÁÙ½çµÄ½»µãΪ£º£¨-n-1£¬0£©Ó루3-n£¬0£©£¬´úÈë¹ØÏµÊ½Çó³ö¼´¿É£®
½â´ð ½â£º£¨1£©ÓÉy=-$\frac{1}{2}$x2+tx+t+$\frac{1}{2}$¿ÉµÃ£º
x=-$\frac{b}{2a}$=t£¬y=$\frac{4ac-{b}^{2}}{4a}$=$\frac{2£¨t+\frac{1}{2}£©-{t}^{2}}{2}$£¬
¡ß¶¥µãMÔÚÖ±Ïßy=2xÉÏ£¬
¡à$\frac{2£¨t+\frac{1}{2}£©-{t}^{2}}{2}$=2t£¬
½âµÃ£ºt1=t2=1£¬
¡àÅ×ÎïÏß½âÎöʽΪ£ºy=-$\frac{1}{2}$x2+x+$\frac{3}{2}$£»
£¨2£©Èçͼ1£¬¡ßM£¨1£¬2£©£¬B£¨3£¬0£©£¬ÉèÖ±ÏßMBµÄ½âÎöʽΪ£ºy=kx+d£¬![]()
Ôò$\left\{\begin{array}{l}{k+d=2}\\{3k+d=0}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=-1}\\{d=3}\end{array}\right.$£¬
¡àÖ±ÏßMBµÄ½âÎöʽΪ£ºy=-x+3£®
ÉèC£¨m£¬2m£©£¬¡àD£¨3-2m£¬2m£©£¬
¡àÕý·½ÐÎCDEFµÄ±ß³¤Îª£º3-3m£¬
¡àE£¨3-2m£¬3-m£©£¬F£¨m£¬3-m£©£¬P£¨m£¬-$\frac{1}{2}$m2+m+$\frac{3}{2}$£©£¬Q£¨3-2m£¬-2m2+4m£©£¬
¡ßÕý·½ÐÎCDEFµÄÃæ»ýµÄÖܳ¤Ç¡ºÃ±»Ö±ÏßPQƽ·Ö£¬
¡àPQ¹ýÕý·½ÐεÄÖÐÐÄ£¬
¡àCP=EQ£¬
¡à£¨-$\frac{1}{2}$m2+m+$\frac{3}{2}$£©-2m=£¨3-m£©-£¨-2m2+4m£©£¬
ÕûÀíµÃ£º5m2-8m+3=0£¬
¡à½âµÃ£ºm1=$\frac{3}{5}$£¬m2=1£¨ÉáÈ¥£©£¬
¡àC£¨$\frac{3}{5}$£¬$\frac{6}{5}$£©£»
£¨3£©Èçͼ2£¬ÓÉÌâÒâ¿ÉµÃ£¬µãB£¬C¼ä²¿·ÖͼÏóµÄ½âÎöʽΪ£ºy=-$\frac{1}{2}$£¨x-3£©£¨x+1£©£¬-1¡Üx¡Ü3£¬![]()
ÔòÅ×ÎïÏßÏò×óÆ½ÒÆºóµÃµ½µÄͼÏóGµÄ½âÎöʽΪ£º
y=-$\frac{1}{2}$£¨x-3+n£©£¨x+1+n£©£¬-n-1¡Üx¡Ü3-n£¬
´ËʱֱÏ߯½ÒƺóµÄ½âÎöʽΪ£ºy=4x+6+n£¬
Èç¹ûÆ½ÒÆºóµÄÖ±ÏßÓëÆ½ÒÆµÄ¶þ´Îº¯ÊýÏàÇУ¬
Ôò·½³Ì4x+6+n=-$\frac{1}{2}$£¨x-3+n£©£¨x+1+n£©ÓÐÁ½¸öÏàµÈµÄʵÊý¸ù£¬
¼´-$\frac{1}{2}$x2-£¨n+3£©x-$\frac{1}{2}$n2-$\frac{9}{2}$=0ÓÐÁ½¸öÏàµÈµÄʵÊý¸ù£¬
¹Ê¡÷=[-£¨n+3£©]2-4¡Á£¨-$\frac{1}{2}$£©¡Á£¨-$\frac{1}{2}$n2-$\frac{9}{2}$£©=6n=0£¬
¼´n=0£¬
¡ßÓëÒÑÖªn£¾0Ïàì¶Ü£¬
¡àÆ½ÒÆºóµÄÖ±ÏßÓëÆ½ÒÆºóµÄÅ×ÎïÏß²»ÏàÇУ¬
¡à½áºÏͼÏó¿ÉÖª£¬Æ½ÒƺóµÄÖ±ÏßÓëÅ×ÎïÏßGÓÐÁ½¸ö¹«¹²µã£¬
ÔòÕâÁ½¸öÁÙ½çµÄ½»µãΪ£º£¨-n-1£¬0£©Ó루3-n£¬0£©£¬
Ôò0=4£¨-n-1£©+6+n£¬
½âµÃ£ºn=$\frac{2}{3}$£¬
0=4£¨3-n£©+6+n£¬
½âµÃ£ºn=6£¬
¼´nµÄȡֵ·¶Î§ÊÇ£º$\frac{2}{3}$¡Ün¡Ü6£®
µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯Êý×ÛºÏÒÔ¼°Õý·½ÐεÄÐÔÖʺÍÒ»Ôª¶þ´Î·½³ÌµÄ¸ùµÄÅбðʽµÈ֪ʶ£¬ÀûÓÃÊýÐμ¸ºÎµÃ³öÆ½ÒÆºóµÄÖ±ÏßÓëÅ×ÎïÏßGÓÐÁ½¸ö¹«¹²µãÊǽâÌâ¹Ø¼ü£®
| A£® | y=-x | B£® | y=2+3x | C£® | y=5x | D£® | y=-3+2x |
| A£® | -6 | B£® | -12 | C£® | 12 | D£® | 27 |
| A£® | a=bcotB | B£® | a=csinA | C£® | $c=\frac{b}{cosA}$ | D£® | acosB=c |