题目内容

如图,四边形ABCD中,AD平行BC,∠ABC=90°,AD=2,AB=6,以AB为直径的半⊙O 切CD于点E,F为弧BE上一动点,过F点的直线MN为半⊙O的切线,MN交BC于M,交CD于N,则△MCN的周长为(  )
A、9
B、10
C、3
11
D、2
23
考点:切线长定理
专题:计算题
分析:作DH⊥BC于H,如图,利用平行线的性质得AB⊥AD,AB⊥BC,则根据切线的判定得到AD和BC为⊙O切线,根据切线长定理得DE=DA=2,CE=CB,NE=NF,MB=MF,利用四边形ABHD为矩形得BH=AD=2,DH=AB=6,设BC=x,则CH=x-2,CD=x+2,在Rt△DCH中根据勾股定理得(x-2)2+62=(x+2)2,解得x=
9
2
,即CB=CE=
9
2
,然后由等线段代换得到△MCN的周长=CE+CB=9.
解答:解:作DH⊥BC于H,如图,
∵四边形ABCD中,AD平行BC,∠ABC=90°,
∴AB⊥AD,AB⊥BC,
∵AB为直径,
∴AD和BC为⊙O 切线,
∵CD和MN为⊙O 切线,
∴DE=DA=2,CE=CB,NE=NF,MB=MF,
∵四边形ABHD为矩形,
∴BH=AD=2,DH=AB=6,
设BC=x,则CH=x-2,CD=x+2,
在Rt△DCH中,∵CH2+DH2=DC2
∴(x-2)2+62=(x+2)2,解得x=
9
2

∴CB=CE=
9
2

∴△MCN的周长=CN+CM+MN
=CN+CM+NF+MF
=CN+CM+NF+MB
=CE+CB
=9.
故选A.
点评:本题考查了切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.也考查了勾股定理.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网