题目内容
10.把点P(1,1)向右平移3个单位长度,再向上平移2个单位长度后的坐标为(4,3).分析 根据坐标的平移规律:左减右加、下减上加可得.
解答 解:根据题意知,平移后点的坐标为(1+3,1+2),即(4,3),
故答案为:(4,3).
点评 本题主要考查坐标与图形的变化-平移,熟练掌握点的坐标的平移规律:左减右加、下减上加是解题的关键.
练习册系列答案
相关题目
1.如图1,将边长为1的正方形ABCD压扁为边长为1的菱形ABCD.在菱形ABCD中,∠A的大小为α,面积记为S.

(1)请补全表:
(2)填空:由(1)可以发现单位正方形在压扁的过程中,菱形的面积随着∠A大小的变化而变化,不妨把单位菱形的面积S记为S(α).例如:当α=30°时,S=S(30°)=$\frac{1}{2}$;当α=135°时,S=S=$\frac{\sqrt{2}}{2}$.由上表可以得到S(60°)=S(120°);S(30°)=S(30°),…,由此可以归纳出S(α)=(α°).
(3)两块相同的等腰直角三角板按图2的方式放置,AD=$\sqrt{2}$,∠AOB=α,试探究图中两个带阴影的三角形面积是否相等,并说明理由(注:可以利用(2)中的结论).
(1)请补全表:
| α | 30° | 45° | 60° | 90° | 120° | 135° | 150° |
| S | $\frac{1}{2}$ | 1 | $\frac{\sqrt{2}}{2}$ |
(3)两块相同的等腰直角三角板按图2的方式放置,AD=$\sqrt{2}$,∠AOB=α,试探究图中两个带阴影的三角形面积是否相等,并说明理由(注:可以利用(2)中的结论).