题目内容
【题目】如图,矩形
中,
,
.作DE⊥AC于点E,作AF⊥BD于点F.
(1)求AF、AE的长;
(2)若以点
为圆心作圆,
、
、
、E、F五点中至少有1个点在圆内,且至少有2个点在圆外,求
的半径
的取值范围.
![]()
【答案】(1)
,
;(2)![]()
【解析】
(1)先利用等面积法算出AF=
,再根据勾股定理得出
;
(2)根据题意点F只能在圆内,点C、D只能在圆外,所以⊙A的半径r的取值范围为
.
解:如图,
![]()
(1)在矩形
中,
,
.
∴DC=AB=3,AC=BD=
=5,
∵DE⊥AC,AF⊥BD,
∴
;
∴AF=
,
同理,DE=
,
在Rt△ADE中,AE=
=
,
(2) 若以点
为圆心作圆,
、
、
、E、F五点中至少有1个点在圆内,则r>2.4,
当至少有2个点在圆外,r<4,
故⊙A的半径r的取值范围为:![]()
练习册系列答案
相关题目