题目内容
【题目】如图,在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.
(1)求证:△BDC≌△EFC;
(2)若EF∥CD,求证:∠BDC=90°.
![]()
【答案】(1)详见解析;(2)详见解析.
【解析】
(1)根据旋转的性质可得CD=CF,∠DCF=90°,然后根据同角的余角相等求出∠BCD=∠ECF,再利用“边角边”证明即可;
(2)根据两直线平行,同旁内角互补求出∠F=90°,再根据全等三角形对应角相等可得∠BDC=∠F.
(1)由旋转的性质得,CD=CF,∠DCF=90°,
∴∠DCE+∠ECF=90°,
∵∠ACB=90°,
∴∠BCD+∠DCE=90°,
∴∠BCD=∠ECF,
在△BDC和△EFC中,
,
∴△BDC≌△EFC(SAS);
(2)∵EF∥CD,
∴∠F+∠DCF=180°,
∵∠DCF=90°,
∴∠F=90°,
∵△BDC≌△EFC,
∴∠BDC=∠F=90°.
练习册系列答案
相关题目