题目内容


已知抛物线y=-x2-2x+a(a≠0)与y轴交于A,顶点为M,直线分别与x轴、y轴交于B、C两点,并且与直线MA相交于N点。

(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M、A的坐标;

(2)将△NAC沿着y轴翻折,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于D,连接CD。求a的值及△PCD的面积;

(3)在抛物线y=-x2-2x+a(a>0)上是否存在点P,使得以P、A、C、N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由。

 


                                                                                                                               

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网