题目内容

如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线y=mx2+nx相交于A(1,3 ),B(4,0)两点.

(1)求出抛物线的解析式;

(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;

(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△BCN、S△PMN满足S△BCN=2S△PMN,求出的值,并求出此时点M的坐标.

(1)抛物线解析式为y=﹣x2+4x; (2)存在满足条件的D点,其坐标为(1,0)或(0, )或(0, );理由见解析; (3)点M的坐标为(+1,2+). 【解析】【解析】 (1)∵A(1,3),B(4,0)在抛物线y=mx2+nx的图象上, ∴,解得, ∴抛物线解析式为y=﹣x2+4x;(2分) (2)存在三个点满足题意,理由如下: 当点D在x轴上...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网