题目内容
有四张背面完全相同的纸质卡片,其正面分别有数: , , , .将它们背面朝上洗匀后,从中随机抽取一张卡片,则其正面的数比小的概率是__________.
如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线y=mx2+nx相交于A(1,3 ),B(4,0)两点.
(1)求出抛物线的解析式;
(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;
(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△BCN、S△PMN满足S△BCN=2S△PMN,求出的值,并求出此时点M的坐标.
若不等式组有解,则m的取值范围是( )
A. m>2 B. m<2 C. m≥2 D. m≤2
如图,在平面直角坐标系中,抛物线与轴交与点,与轴交于、两点,点坐标为,抛物线的对称轴方程为.
()求抛物线的解析式.
()点从点出发,在线段上以每秒个单位长度的速度向点运动,同时点从点出发,在线段上以每秒个单位长度的速度向点运动,其中一个点到达终点时,另一个点也停止运动,在点运动过程中,是否存在某一时刻,使为直角三角形?若存在,求出的值;若不存在,请说明理由.
()若点为抛物线对称轴上一点,当是直角三角形时,求点的坐标.
在中, ,点为平面内一点,且,若,则__.(请用含的代数式来表示)
⊙内有一点,过点的所有弦中,最长的为,最短的为,则的长为( )
A. 6 B. 7 C. 8 D. 10
为迎接2008年北京奥运会,某学校组织了一次野外长跑活动,参加长跑的同学出发后,另一些同学从同地骑自行车前去加油助威。如图,线段L1,L2分别表示长跑的同学和骑自行车的同学行进的路程y(千米)随时间x(分钟)变化的函数图象.根据图象,解答下列问题:
(1)分别求出长跑的同学和骑自行车的同学的行进路程y与时间x的函数表达式;
(2)求长跑的同学出发多少时间后,骑自行车的同学就追上了长跑的同学?
的算术平方根是( )
A. 4 B. ±4 C. 2 D. ±2
用不等号“>、<、≥、≤”填空:a2+1 0.