题目内容

3.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,求∠CAB的度数.

分析 根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠BAC+∠ABC,∠PCD=∠P+∠PCB,根据角平分线的定义可得∠PCD=$\frac{1}{2}$∠ACD,∠PBC=$\frac{1}{2}$∠ABC,然后整理得到∠PCD=40°+$\frac{1}{2}$∠ABC,再代入数据计算即可得解.

解答 解:在△ABC中,∠ACD=∠BAC+∠ABC,
在△PBC中,∠PCD=∠BPC+∠PBC,
∵PB、PC分别是∠ABC和∠ACD的平分线,
∴∠PCD=$\frac{1}{2}$∠ACD,∠PBC=$\frac{1}{2}$∠ABC,
∴∠PCD=∠BPC+∠PBC=40°+$\frac{1}{2}$∠ABC,
∴$\frac{1}{2}$∠ACD=$\frac{1}{2}$∠ABC+40°,
∴∠ACD-∠ABC=80°,
∴∠BAC=∠ACD-∠ABC=80°,
即∠CAB=80°.

点评 本题考查了三角形内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记定理与性质并求出∠PCD=40°+$\frac{1}{2}$∠ABC是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网