题目内容
若2m-5与4m-9是某一个正数的平方根,则m的值是( )
A. B. -1 C. 或2 D. 2
某校研究性学习小组在研究有关二次函数及其图象性质的问题时,发现了两个重要结论.一是发现抛物线y=ax2+2x+3(a≠0),当实数a变化时,它的顶点都在某条直线上;二是发现当实数a变化时,若把抛物线y=ax2+2x+3的顶点的横坐标减少,纵坐标增加,得到A点的坐标;若把顶点的横坐标增加,纵坐标增加,得到B点的坐标,则A、B两点一定仍在抛物线y=ax2+2x+3上.
(1)请你协助探求出当实数a变化时,抛物线y=ax2+2x+3的顶点所在直线的解析式;
(2)问题(1)中的直线上有一个点不是该抛物线的顶点,你能找出它来吗?并说明理由;
(3)在他们第二个发现的启发下,运用“一般﹣一特殊﹣一般”的思想,你还能发现什么?你能用数学语言将你的猜想表述出来吗?你的猜想能成立吗?若能成立请说明理由.
抛物线的在对称轴的 侧的部分上升.(填“左”或“右”)
若y=(a+3)x+a2-9是正比例函数,则a=______.
点P1(x1,y1),点P2(x2,y2)是一次函数y=-4x+3图象上的两个点,且x1<x2,则y1与y2的大小关系是( )
A. y1>y2 B. y1>y2>0 C. y1<y2 D. y1=y2
已知:梯形ABCD中,AD//BC,AD=AB,对角线AC、BD交于点E,点F在边BC上,且∠BEF=∠BAC.
(1)求证:△AED∽△CFE;
(2)当EF//DC时,求证:AE=DE.
已知抛物线,那么点P(-3,4)关于该抛物线的对称轴对称的点的坐标是______.
阅读理解题:
按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为,依次类推,排在第位的数称为第项,记为.
一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母表示().如:数列1,3,9,27,…为等比数列,其中,公比为.
则:(1)等比数列3,6,12,…的公比为_____________,第4项是________________.
(2)如果一个数列, , , ,…是等比数列,且公比为,那么根据定义可得到:
, , ,…… .
∴, , ,
由此可得:an=____________________(用a1和q的代数式表示)
(3)若一等比数列的公比q=2,第2项是10,请求它的第1项与第4项.
已知代数式x+2y的值是3,则代数式2x+4y+1的值是( )
A. 1 B. 4 C. 7 D. 不能确定