题目内容
1.分析 由∠BAC为直角,得到其他两锐角互余,又根据AE与BD垂直,得到三角形ADF为直角三角形,故两锐角也互余,根据同角的余角相等即可得证.
解答 证明:如图,
作AG平分∠BAC,交BD于点G
∵∠BAC=90°,AE⊥BD,
∴∠DAE+∠ADB=∠ABE+∠ADB=90°,
∴∠ABG=∠CAF,
∵△ABC是等腰直角三角形,
∴AB=AC,∠C=∠BAG=45°,
∴$\left\{\begin{array}{l}{∠ABG=∠CAF}\\{AB=AC}\\{∠C=∠BAG=45°}\end{array}\right.$
∴△BAG≌△CAF,(ASA)
∴AG=CF,
又∵AD=CD,∠GAD=∠C=45°,
∴△AGD≌△DFC,(SAS)
∴∠ADB=∠CDF.
点评 本题考查了等腰直角三角形的性质,以及全等三角形的判定与性质.添加合适的辅助线,构造全等三角形是解本题的关键.
练习册系列答案
相关题目
10.
如图,ABCD与BEFG是并列放在一起的两个正方形,O是BF与EG的交点,如果正方形ABCD的面积是9cm2,CG=2cm,则三角形DEO的面积是( )cm2.
| A. | 6.25 | B. | 5.75 | C. | 4.50 | D. | 3.75 |