题目内容

13.如图,在△ABC中,D、E是AB、AC中点,AG为BC边上的中线,DE、AG相交于点O,求证:AG与DE互相平分.

分析 连接DG,EG,根据三角形中位线性质得出DG∥AC,EG∥AB,根据平行四边形的判定得出四边形ADGE为平行四边形,根据平行四边形的性质得出即可.

解答 证明:连接DG,EG,

∵D、E是AB、AC中点,AG为BC边上的中线,
∴DG∥AC,EG∥AB,
∴四边形ADGE为平行四边形,
∴AG与DE互相平分.

点评 本题考查了三角形的中位线,平行四边形的性质和判定的应用,能求出四边形ADGE是平行四边形是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网