题目内容

阅读下列材料,然后解答问题.
经过正四边形(即正方形)各顶点的圆叫做这个正四边形的外接圆,圆心是正四边形的对称中心,这个正四边形叫做这个圆的内接正四边形.
如图,正方形ABCD内接于⊙O,⊙O的面积为S1,正方形ABCD的面积为S2.以圆心O为顶点作∠MON,使∠MON=90°.将∠MON绕点O旋转,OM、ON分别与⊙O交于点E、F,分别与正方形ABCD的边交于点G、H.设由OE、OF、
EF
及正方形ABCD的边围成的图形(阴影部分)的面积为S.
(1)当OM经过点A时(如图①),则S、S1、S2之间的关系为:
 
(用含S1、S2的代数式表示);
(2)当OM⊥AB于G时(如图②),则(1)中的结论仍然成立吗?请说明理由;
(3)当∠MON旋转到任意位置时(如图③),则(1)中的结论仍然成立吗?请说明理由.
考点:圆的综合题
专题:
分析:(1)结合正方形的性质及等腰直角三角形的性质,容易得出结论;
(2)仍然成立,可证得四边形OGHB为正方形,则可求出阴影部分的面积为扇形OEF的面积减去正方形OGBH的面积;
(3)仍然成立,过O作OR⊥AB,OS⊥BC,垂足分别为R、S,则可证明△ORG≌△OSH,可得出四边形ORBS的面积=四边形OGBH的面积,再利用扇形OEF的面积减正方形ORBS的面积即可得出结论.
解答:解:(1)当OM经过点A时由正方形的性质可知:∠MON=90°,
∴S△OAB=
1
4
S正方形ABCD=
1
4
S2,S扇形OEF=
1
4
S圆O=
1
4
S1
∴S=S扇形OEF-S△OAB=
1
4
S圆O-
1
4
S正方形ABCD=
1
4
S1-
1
4
S2=
1
4
(S1-S2),
故答案为:S=
1
4
(S1-S2);
(2)结论仍然成立,理由如下:
∵∠EOF=90°,
∴S扇形OEF=
1
4
S圆O=
1
4
S1
∵∠OGB=∠EOF=∠ABC=90°,
∴四边形OGBH为矩形,
∵OM⊥AB,
∴BG=
1
2
AB=
1
2
BC=BH,
∴四边形OGBH为正方形,
∴S四边形OGBH=BG2=(
1
2
AB)2=
1
4
S2
∴S=S扇形OEF-S四边形OGBH=
1
4
S1-
1
4
S2=
1
4
(S1-S2);
(3)(1)中的结论仍然成立,理由如下:
∵∠EOF=90°,
∴S扇形OEF=
1
4
S圆O=
1
4

过O作OR⊥AB,OS⊥BC,垂足分别为R、S,
由(2)可知四边形ORBS为正方形,
∴OR=OS,
∵∠ROS=90°,∠MON=90°,
∴∠ROG=∠SOH=90°-∠GOS,
在△ROG和△SOH中,
∠ROG=∠SOH
OR=OS
∠ORG=∠OSH

∴△ROG≌△SOH(ASA),
∴S△ORG=S△OSH
∴S四边形OGBH=S正方形ORBS
由(2)可知S正方形ORBS=
1
4
S2
∴S四边形OGBH=
1
4
S2
∴S=S扇形OEF-S四边形OGBH=
1
4
(S1-S2).
点评:本题主要考查圆的有关计算及正方形的性质、三角形全等的判定和性质等知识的综合运用,求阴影部分的面积主要有两种方法,即“割”或“补”把阴影部分的面积分成其他图形面积的和或差来求解,这是本题解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网