题目内容

阅读下列材料:

如图1,⊙O1和⊙O2外切于点C,AB是⊙O1和⊙O2外公切线,A、B为切点,

求证:AC⊥BC

证明:过点C作⊙O1和⊙O2的内公切线交AB于D,

∵DA、DC是⊙O1的切线

∴DA=DC.

∴∠DAC=∠DCA.

同理∠DCB=∠DBC.

又∵∠DAC+∠DCA+∠DCB+∠DBC=180°,

∴∠DCA+∠DCB=90°.

即AC⊥BC.

根据上述材料,解答下列问题:

(1)在以上的证明过程中使用了哪些定理?请写出两个定理的名称或内容;

(2)以AB所在直线为x轴,过点C且垂直于AB的直线为y轴建立直角坐标系(如图2),已知A、B两点的坐标为(﹣4,0),(1,0),求经过A、B、C三点的抛物线y=ax2+bx+c的函数解析式;

(3)根据(2)中所确定的抛物线,试判断这条抛物线的顶点是否落在两圆的连心O1O2上,并说明理由.

(1)见解析;(2) ;(3)见解析 【解析】试题分析:(1)由切线长相等可知用了切线长定理;由三角形的内角和是180°,可知用了三角形内角和定理; (2)先根据勾股定理求出点坐标,再用待定系数法即可求出经过三点的抛物线的函数解析式; (3)过作两圆的公切线,交于点,由切线长定理可求出点坐标,根据 两点的坐标可求出过两点直线的解析式,根据过一点且互相垂直的两条直线解析式的关系可求出过两圆...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网