ÌâÄ¿ÄÚÈÝ
£¨1£©Ç󣺾¹ýA¡¢B¡¢DÈýµãµÄÅ×ÎïÏß½âÎöʽ
¢ÚÔÚÅ×ÎïÏߵĶԳÆÖáÉÏ´æÔÚÒ»µã£¬Ê¹µÃÒÔµãC¡¢D¡¢MΪ¶¥µãµÄÈý½ÇÐÎÊÇÖ±½ÇÈý½ÇÐΣ¬ÇëÖ±½Óд³öµãMµÄ×ø±ê£»
£¨3£©ÔÚÖ±ÏßBDÉÏ·½µÄÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹µÃ¡÷PBDµÄÃæ»ýS¡÷PBD=
| 1 |
| 4 |
¿¼µã£º¶þ´Îº¯Êý×ÛºÏÌâ
רÌ⣺ѹÖáÌâ
·ÖÎö£º£¨1£©¸ù¾ÝÐýתµÄÐÔÖʺ͵ȱßÈý½ÇÐεÄÐÔÖÊÇó³öAD¡ÎxÖᣬȻºóд³öµãDµÄ×ø±ê£¬ÔÙÀûÓôý¶¨ÏµÊý·¨Çó¶þ´Îº¯Êý½âÎöʽ½â´ð£»
£¨2£©¸ù¾Ý¶þ´Îº¯ÊýµÄ¶Ô³ÆÐÔ£¬ADÓë¶Ô³ÆÖá´¹Ö±£¬ËùÒÔ½»µã¼´ÎªËùÇóµÄµãM£»µãDΪֱ½Ç¶¥µãʱ£¬ÀûÓÃÏàËÆÈý½ÇÐζÔÓ¦±ß³É±ÈÀýÇó³öCM£¬È»ºóд³öµãMµÄ×ø±ê¼´¿É£»
£¨3£©ÀûÓôý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý½âÎöʽÇó³öÖ±ÏßBDµÄ½âÎöʽ£¬Éè¹ýµãPÓëyÖáÆ½ÐеÄÖ±ÏßÓëÖ±ÏßBDÏཻÓÚµãQ£¬±íʾ³öPQ£¬ÔÙÀûÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½ºÍƽÐÐËıßÐεÄÃæ»ý¹«Ê½Áгö·½³Ì£¬Çó³öxÖµ£¬È»ºóÀûÓÃÅ×ÎïÏß½âÎöʽÇó½â¼´¿É£®
£¨2£©¸ù¾Ý¶þ´Îº¯ÊýµÄ¶Ô³ÆÐÔ£¬ADÓë¶Ô³ÆÖá´¹Ö±£¬ËùÒÔ½»µã¼´ÎªËùÇóµÄµãM£»µãDΪֱ½Ç¶¥µãʱ£¬ÀûÓÃÏàËÆÈý½ÇÐζÔÓ¦±ß³É±ÈÀýÇó³öCM£¬È»ºóд³öµãMµÄ×ø±ê¼´¿É£»
£¨3£©ÀûÓôý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý½âÎöʽÇó³öÖ±ÏßBDµÄ½âÎöʽ£¬Éè¹ýµãPÓëyÖáÆ½ÐеÄÖ±ÏßÓëÖ±ÏßBDÏཻÓÚµãQ£¬±íʾ³öPQ£¬ÔÙÀûÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½ºÍƽÐÐËıßÐεÄÃæ»ý¹«Ê½Áгö·½³Ì£¬Çó³öxÖµ£¬È»ºóÀûÓÃÅ×ÎïÏß½âÎöʽÇó½â¼´¿É£®
½â´ð£º½â£º£¨1£©¡ßµÈ±ß¡÷ABCÈÆ×ŵãC˳ʱÕëÐýת60¡ãµÄµÃµ½¡÷DEF£¬£¨ÐýתºóDÓëA¡¢EÓëB¡¢FÓëC¶ÔÓ¦£©£¬
¡à¡ÏCAD=¡ÏACB=60¡ã£¬
¡àAD¡ÎxÖᣬ
¡ßB£¨-1£¬0£©¡¢C£¨1£¬0£©£¬
¡àBC=2£¬AO=
¡Á2=
£¬
¡àµãAµÄ×ø±êΪ£¨0£¬
£©£¬µãDµÄ×ø±êΪ£¨2£¬
£©£¬
Éè¾¹ýA¡¢B¡¢DÈýµãµÄÅ×ÎïÏß½âÎöʽΪy=ax2+bx+c£¬
Ôò
£¬
½âµÃ
£¬
ËùÒÔ£¬Å×ÎïÏß½âÎöʽΪy=-
x2+
x+
£»

£¨2£©¡ßAD¡ÎxÖᣬ
¡àµãMΪADÓë¶Ô³ÆÖáµÄ½»µãʱ¡ÏCMD=90¡ã£¬
´Ëʱ£¬M1£¨1£¬
£©£¬
ÈôµãDΪֱ½Ç¶¥µã£¬Ôò¡÷CDM1¡×¡÷CM2D£¬
¡à
=
£¬
¼´
=
£¬
½âµÃCM2=
£¬
´Ëʱ£¬µãM2£¨1£¬
£©£¬
×ÛÉÏËùÊö£¬M1£¨1£¬
£©£¬M2£¨1£¬
£©Ê±£¬ÒÔµãC¡¢D¡¢MΪ¶¥µãµÄÈý½ÇÐÎÊÇÖ±½ÇÈý½ÇÐΣ»
£¨3£©ÉèÖ±ÏßBDµÄ½âÎöʽΪy=kx+b£¬
Ôò
£¬
½âµÃ
£¬
ËùÒÔ£¬y=
x+
£¬
Éè¹ýµãPÓëyÖáÆ½ÐеÄÖ±ÏßÓëÖ±ÏßBDÏཻÓÚµãQ£¬
ÔòPQ=£¨-
x2+
x+
£©-£¨
x+
£©=-
x2+
x+
£¬
¡ßS¡÷PBD=
SËıßÐÎABCD£¬
¡à
¡Á£¨-
x2+
x+
£©¡Á£¨2+1£©=
¡Á2¡Á
£¬
ÕûÀíµÃ£¬x2-x-1=0£¬
½âµÃx1=
£¬x2=
£¬
ËùÒÔ£¬y1=
+
£¬y2=
-
£¬
ËùÒÔ£¬µãPµÄ×ø±êΪ£¨
£¬
+
£©»ò£¨
£¬
-
£©£®
¡à¡ÏCAD=¡ÏACB=60¡ã£¬
¡àAD¡ÎxÖᣬ
¡ßB£¨-1£¬0£©¡¢C£¨1£¬0£©£¬
¡àBC=2£¬AO=
| ||
| 2 |
| 3 |
¡àµãAµÄ×ø±êΪ£¨0£¬
| 3 |
| 3 |
Éè¾¹ýA¡¢B¡¢DÈýµãµÄÅ×ÎïÏß½âÎöʽΪy=ax2+bx+c£¬
Ôò
|
½âµÃ
|
ËùÒÔ£¬Å×ÎïÏß½âÎöʽΪy=-
| ||
| 3 |
2
| ||
| 3 |
| 3 |
£¨2£©¡ßAD¡ÎxÖᣬ
¡àµãMΪADÓë¶Ô³ÆÖáµÄ½»µãʱ¡ÏCMD=90¡ã£¬
´Ëʱ£¬M1£¨1£¬
| 3 |
ÈôµãDΪֱ½Ç¶¥µã£¬Ôò¡÷CDM1¡×¡÷CM2D£¬
¡à
| CM1 |
| CD |
| CD |
| CM2 |
¼´
| ||
| 2 |
| 2 |
| CM2 |
½âµÃCM2=
4
| ||
| 3 |
´Ëʱ£¬µãM2£¨1£¬
4
| ||
| 3 |
×ÛÉÏËùÊö£¬M1£¨1£¬
| 3 |
4
| ||
| 3 |
£¨3£©ÉèÖ±ÏßBDµÄ½âÎöʽΪy=kx+b£¬
Ôò
|
½âµÃ
|
ËùÒÔ£¬y=
| ||
| 3 |
| ||
| 3 |
Éè¹ýµãPÓëyÖáÆ½ÐеÄÖ±ÏßÓëÖ±ÏßBDÏཻÓÚµãQ£¬
ÔòPQ=£¨-
| ||
| 3 |
2
| ||
| 3 |
| 3 |
| ||
| 3 |
| ||
| 3 |
| ||
| 3 |
| ||
| 3 |
2
| ||
| 3 |
¡ßS¡÷PBD=
| 1 |
| 4 |
¡à
| 1 |
| 2 |
| ||
| 3 |
| ||
| 3 |
2
| ||
| 3 |
| 1 |
| 4 |
| 3 |
ÕûÀíµÃ£¬x2-x-1=0£¬
½âµÃx1=
1+
| ||
| 2 |
1-
| ||
| 2 |
ËùÒÔ£¬y1=
| ||
| 6 |
5
| ||
| 6 |
5
| ||
| 6 |
| ||
| 6 |
ËùÒÔ£¬µãPµÄ×ø±êΪ£¨
1+
| ||
| 2 |
| ||
| 6 |
5
| ||
| 6 |
1-
| ||
| 2 |
5
| ||
| 6 |
| ||
| 6 |
µãÆÀ£º±¾ÌâÊǶþ´Îº¯Êý×ÛºÏÌ⣬Ö÷ÒªÀûÓÃÁËÐýתµÄÐÔÖÊ£¬µÈ±ßÈý½ÇÐεÄÐÔÖÊ£¬´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯Êý½âÎöʽ£¬´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý½âÎöʽ£¬Ö±½ÇÈý½ÇÐεÄÐÔÖÊ£¬ÄѵãÔÚÓÚ£¨2£©Òª·ÖÇé¿öÌÖÂÛ£¬£¨3£©±íʾ³ö¡÷PBDµÄÃæ»ý£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
A¡¢2
| ||
B¡¢2
| ||
C¡¢3
| ||
D¡¢2
|
´úÊýʽ-
£¬
£¬x+y£¬
£¬
£¬
£¬
ÖÐÊÇ·ÖʽµÄÓУ¨¡¡¡¡£©
| 3x |
| 2 |
| 4 |
| x-y |
| x2+1 |
| ¦Ð |
| 7 |
| 8 |
| 5b |
| 3a |
| x2 |
| x |
| A¡¢1¸ö | B¡¢2¸ö | C¡¢3¸ö | D¡¢4¸ö |
¶þ´Î¸ùʽ
ÓÐÒâÒåʱ£¬xµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| x+3 |
| A¡¢x¡Ý-3 | B¡¢x£¾-3 |
| C¡¢x¡Ü-3 | D¡¢x¡Ù-3 |