题目内容

设P是正方形ABCD的外接圆的劣弧AD上任意一点,则PA+PC与PB的比值为
 
考点:圆内接四边形的性质,全等三角形的判定与性质,等腰直角三角形,正方形的性质
专题:
分析:首先根据题意画出图形,然后延长PA到E,使AE=PC,连接BE,易证得△ABE≌△CBP,继而可证得△BEP是等腰直角三角形,则可求得答案.
解答:解:延长PA到E,使AE=PC,连接BE,
∵∠BAE+∠BAP=180°,∠BAP+∠PCB=180°,
∴∠BAE=∠PCB,
∵四边形ABCD是正方形,
∴AB=BC,∠ABC=90°,
在△ABE和△CBP中,
AB=BC
∠BAE=∠PCB
AE=CP

∴△ABE≌△CBP(SAS),
∴∠ABE=∠CBP,BE=BP,
∴∠ABE+∠ABP=∠ABP+∠CBP=90°,
∴△BEP是等腰直角三角形,
∴PA+PC=PE=
2
PB.
故答案为:
2
点评:此题考查了圆的内接多边形的性质、正方形的性质、全等三角形的判定与性质以及等腰直角三角形性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网