题目内容
如图,在四边形ABCD中,AB=AD,AC与BD交于点E,∠ADB=∠ACB.
(1)求证:
=
;
(2)若AB⊥AC,AE:EC=1:2,F是BC中点,求证:四边形ABFD是菱形.
![]()
证明:(1)∵AB=AD,∴∠ADB=∠ABE,又∵∠ADB=∠ACB,∴∠ABE=∠ACB,
又∵∠BAE=∠CAB,∴△ABE∽△ACB,∴
=
,又∵AB=AD,∴
=
;
(2)设AE=x,∵AE:EC=1:2,∴EC=2x,
由(1)得:AB2=AE•AC,∴AB=
x,又∵BA⊥AC,∴BC=2
x,∴∠ACB=30°,
∵F是BC中点,∴BF=
x,∴BF=AB=AD,
又∵∠ADB=∠ACB=∠ABD,∴∠ADB=∠CBD=30°,∴AD∥BF,
∴四边形ABFD是平行四边形,又∵AD=AB,∴四边形ABFD是菱形.
练习册系列答案
相关题目