题目内容

如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向黄色区域的概率是( )

A. B. C. D.

A 【解析】 试题解析:∵转盘被等分成6个扇形区域, 而黄色区域占其中的一个, ∴指针指向黄色区域的概率=. 故选A.
练习册系列答案
相关题目

如图,AB∥CD,∠BMN与∠DNM的平分线相交于点G.

(1)完成下面的证明:

∵MG平分∠BMN  

∴∠GMN=∠BMN  

同理∠GNM=∠DNM.

∵AB∥CD  

∴∠BMN+∠DNM=  

∴∠GMN+∠GNM=  

∵∠GMN+∠GNM+∠G=  

∴∠G=  

∴MG与NG的位置关系是  

(2)把上面的题设和结论,用文字语言概括为一个命题:  

已知;角平分线的定义;已知;180°;90°;180°;90°;MG⊥NG. 【解析】试题分析:(1)根据平行线的性质进行填空即可; (2)根据的特点作出结论. 试题解析:(1)∵MG平分∠BMN(已知) (角平分线的定义), 同理 ∵ABCD(已知), ∴MG与NG的位置关系是MG⊥NG; 故答案为:已知;角平分线的定义;已知; MG⊥NG; (...

公路BC所在的直线恰为AD的垂直平分线,则下列说法中:①小明从家到书店与小颖从家到书店一样远;②小明从家到书店与从家到学校一样远;③小颖从家到书店与从家到学校一样远;④小明从家到学校与小颖从家到学校一样远. 正确的是()

A. ①③ B. ②③ C. ②④ D. ③④

B 【解析】∵公路BC所在的直线恰为AD的垂直平分线, ∴ΔABC≌ΔDBC, ∴CA=CB,BA=BD, 故可判断出②小明从家到书店与从家到学校一样远;③小颖从家到书店与从家到学校一样远; 而无法判断出①小明从家到书店与小颖从家到书店一样远;④小明从家到学校与小颖从家到学校一样远, 故选B.

一个袋中装有2个红球,3个白球,和5个黄球,每个球除了顔色外都相同,从中任意摸出一个球,分别求出摸到红球,白球,黄球的概率。

,, 【解析】 试题分析:先求出球的总个数,根据概率的定义直接计算即可.概率=所求情况数与总情况数之比. 试题解析:摸到红球的概率为即,摸到白球的概率为 摸到白球的概率为,即

从分别标有1、2、3、4的四张卡片中,一次同时抽2张,其中和为奇数的概率是

【解析】试题分析:如图所示, 由树状图可知共有4×3=12种可能,和为奇数的有8种,所以概率是=.故答案为: .

已知△ABC.求作:△A′B′C′,使△A′B′C′≌△ABC.

作图见解析 【解析】试题分析:本题可利用全等三角形的判定定理SSS作图,作AC=A′C′,A′B′=AB,BC=B′C′;根据全等三角形的判定可得△A′B′C′≌△ABC,注意尺规作图中作一条线段等于已知线段的作法. 试题解析:作法:①任意作一条射线B′M,以点B′为圆心,以BC为半径画弧,交射线于点C′; ②分别以点B′和点C′为圆心,以AB和AC为半径画弧,交于点A′,连接A...

如图,已知点P为∠MON内一点,点P与点A关于直线ON对称,点P与点B关于直线OM对称.连接AB,交ON于D点,交OM于C点,若AB长为15 cm,求△PCD的周长.

15 cm. 【解析】由点P与点A关于直线ON对称,点P与点B关于直线OM对称可得:ON垂直平分AP,OM垂直平分BP;根据垂直平分线的性质可得DA=DP,CP=CB,通过等量代换得到△PCD的周长与AB的数量关系,即可求解. 【解析】 ∵点P与点A关于直线ON对称,点P与点B关于直线OM对称, ∴ON垂直平分AP,OM垂直平分BP, ∴DA=DP,CP=CB, ∴...

如图,矩形ABCD中,AB=2AD,E为AD的中点,EF⊥EC交AB于点F,连接FC.

(1)求证:△AEF∽△DCE;

(2)求tan∠ECF的值.

(1)答案见解析;(2) 【解析】(1)根据矩形的性质可知∠A="∠D" =90°,再根据三角形的内角和为180°,可知∠DCE+∠DEC=900,由已知EF⊥EC,可得:∠AEF+∠DEC=900得出∠DCE=∠AEF,即可证明⊿AEF∽⊿DCE (2)由(1)可知:⊿AEF∽⊿DCE ∴= 在矩形ABCD中,E为AD 的中点。 AB=2AD ∴ DC=AB=4AE ∴ ...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网