题目内容
考点:全等三角形的应用
专题:
分析:根据同角的余角相等求出∠D=∠CHB,再利用“角角边”证明△ADH和△BHC全等,根据全等三角形对应边相等可得AD=BH,AH=BC,再根据AH=AB-BH计算即可得解.
解答:解:∵∠DHC=90°,
∴∠AHD+∠CHB=90°,
∵DA⊥AB,
∴∠D+∠AHD=90°,
∴∠D=∠CHB,
在△ADH和△BHC中,
,
∴△ADH≌△BHC(AAS),
∴AD=BH=15千米,AH=BC,
∵A,B两站相距25千米,
∴AB=25千米,
∴AH=AB-BH=25-15=10千米,
∴学校C到公路的距离是10千米.
答:H应建在距离A站10千米处,学校C到公路的距离是10千米.
∴∠AHD+∠CHB=90°,
∵DA⊥AB,
∴∠D+∠AHD=90°,
∴∠D=∠CHB,
在△ADH和△BHC中,
|
∴△ADH≌△BHC(AAS),
∴AD=BH=15千米,AH=BC,
∵A,B两站相距25千米,
∴AB=25千米,
∴AH=AB-BH=25-15=10千米,
∴学校C到公路的距离是10千米.
答:H应建在距离A站10千米处,学校C到公路的距离是10千米.
点评:本题考查了全等三角形的应用,全等三角形的性质,熟练掌握全等三角形的判定方法求出两三角形全等是解题的关键.
练习册系列答案
相关题目
下列运算中正确的是( )
| A、a4•a2=a8 |
| B、(3a)2=6a2 |
| C、a5÷a3=a2 |
| D、a5-a3=a2 |
| A、abc>0 |
| B、b<a+c |
| C、a+b+c<0 |
| D、c<2b |