题目内容

已知:如图,在△ABC中,AB=AC,点E在CA的延长线上,EP⊥BC,垂足为P,EP交AB于点F.求证:△AEF是等腰三角形.
考点:等腰三角形的判定与性质
专题:证明题
分析:根据等边对等角得出∠B=∠C,再根据EP⊥BC,得出∠C+∠E=90°,∠B+∠BFP=90°,从而得出∠D=∠BFP,再根据对顶角相等得出∠E=∠AFE,最后根据等角对等边即可得出答案.
解答:证明:在△ABC中,
∵AB=AC,
∴∠B=∠C,
∵EP⊥BC,
∴∠C+∠E=90°,∠B+∠BFP=90°,
∴∠E=∠BFP,
又∵∠BFP=∠AFE,
∴∠E=∠AFE,
∴AF=AE,
∴△AEF是等腰三角形.
点评:本题考查了等腰三角形的判定和性质,解题的关键是证明∠E=∠AFE,注意等边对等角,以及等角对等边的使用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网