题目内容

12.(1)解方程组:$\left\{\begin{array}{l}{x=1-y…①}\\{3x+y=1…②}\end{array}\right.$
(2)用代入消元法解方程组$\left\{\begin{array}{l}2x+3y=12\\ x-2y=-1.\end{array}\right.\begin{array}{l}{①}\\{②}\end{array}$.

分析 (1)方程组利用代入消元法求出解即可;
(2)方程组变形后,利用代入消元法求出解即可.

解答 解:(1)把①代入②得:3-3y+y=1,
解得:y=1,
把y=1代入①得:x=0,
则方程组的解为$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$;
(2)由②变形得:x=2y-1③,
把③代入①得:4y-2+3y=12,
解得:y=2,
把y=2代入①得:x=3,
则方程组的解为$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$.

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网