题目内容

如图,在一个坡角为20°的斜坡上有一棵树,高为AB,当太阳光线与水平线成52°角时,测得该树斜坡上的树影BC的长为10m,求树高AB(精确到0.1m) (已知:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364,sin52°≈0.788,cos52°≈0.616,tan52°≈1.280.供选用)

树高8.6米. 【解析】试题分析:过C作AB的垂线,设垂足为D.在Rt△CDB中,已知斜边BC=10m,利用三角函数求出CD和BD的长.同理在△ACD中,已知∠ACD=52°,CD,求出AD长,计算出AB=AD-BD,从而得到树的高度. 【解析】 作CD⊥AB于D. 在Rt△BCD中,BC=10m,∠BCD=20°, ∴CD=BC•cos20°≈10×0.940=9.40...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网