题目内容
3.分析 点A在1和2之间,比1大,发现把1和2之间平均分成5份,又取了2份是$\frac{2}{5}$,所以点A表示的数是1加上$\frac{2}{5}$,据此解答.
解答 解:点A表示的数是1加上$\frac{2}{5}$,
1+$\frac{2}{5}$=1$\frac{2}{5}$.
故答案为:1$\frac{2}{5}$.
点评 考查了数轴,解答本题的关键是知道1和2之间平均分成5份,点A比1多.
练习册系列答案
相关题目
1.
有这样一个问题:探究函数y=$\frac{1}{(x-2)^{2}}$的图象与性质,小静根据学习函数的经验,对函数y=$\frac{1}{(x-2)^{2}}$的图象与性质进行了探究,下面是小静的探究过程,请补充完整:
(1)函数y=$\frac{1}{(x-2)^{2}}$的自变量x的取值范围是x≠2;
(2)下表是y与x的几组对应值.
表中的m=4;
(3)如图,在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;
(4)结合函数图象,写出一条该函数图象的性质:函数图象关于直线x=2对称.
(1)函数y=$\frac{1}{(x-2)^{2}}$的自变量x的取值范围是x≠2;
(2)下表是y与x的几组对应值.
| x | … | -1 | 0 | 1 | $\frac{3}{2}$ | $\frac{5}{2}$ | 3 | 4 | … |
| y | … | $\frac{1}{9}$ | $\frac{1}{4}$ | 1 | 4 | m | 1 | $\frac{1}{4}$ | … |
(3)如图,在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;
(4)结合函数图象,写出一条该函数图象的性质:函数图象关于直线x=2对称.